Trajectory tracking for a quadrotor system: A flatness-based nonlinear predictive control approach

This paper proposes a flatness-based nonlinear predictive control strategy to solve the trajectory tracking problem for an underactuated quadrotor system model. It is shown that the present nonlinear model can be transformed to a controllable linear system on Brunovskys canonical form by using the differential flatness theory. Thus, a model predictive controller (MPC) is designed for the linear equivalent system to carry out trajectory tracking tasks. Since certain variables of the corresponding transformed system can not be measured directly, a state estimation is performed by a derivative-free Kalman filtering approach. The efficiency of the proposed control scheme is demonstrated through numerical simulations.

[1]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[2]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four-rotor mini rotorcraft , 2004, IEEE Transactions on Control Systems Technology.

[3]  Guilherme V. Raffo,et al.  An integral predictive/nonlinear Hinfinity control structure for a quadrotor helicopter , 2010, Autom..

[4]  R. Lozano,et al.  Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter , 2007 .

[5]  Guillaume Allibert,et al.  Real-time visual predictive controller for image-based trajectory tracking of a mobile robot , 2008 .

[6]  Wen-Hua Chen,et al.  An explicit MPC for quadrotor trajectory tracking , 2015, 2015 34th Chinese Control Conference (CCC).

[7]  P. Siano,et al.  Control of Quadrotors with the Use of the Derivative-Free Nonlinear Kalman Filter , 2015 .

[8]  Mazen Alamir A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies , 2013 .

[9]  Raffaello D'Andrea,et al.  A model predictive controller for quadrocopter state interception , 2013, 2013 European Control Conference (ECC).

[10]  Sergio Salazar,et al.  Optimized Discrete Control Law for Quadrotor Stabilization: Experimental Results , 2016, J. Intell. Robotic Syst..

[11]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[12]  Hebertt Sira-Ramirez,et al.  On the linear control of the quad-rotor system , 2011, Proceedings of the 2011 American Control Conference.

[13]  Gerasimos Rigatos Derivative-Free Nonlinear Kalman Filtering for MIMO Dynamical Systems: Application to Multi-DOF Robotic Manipulators , 2011 .

[14]  Antonio Fernández-Caballero,et al.  Generalized Proportional Integral Control for an Unmanned Quadrotor System , 2015 .

[15]  Rogelio Lozano,et al.  Modelling and Control of Mini-Flying Machines , 2005 .

[16]  Youmin Zhang,et al.  Flatness-based trajectory planning for a quadrotor Unmanned Aerial Vehicle test-bed considering actuator and system constraints , 2012, 2012 American Control Conference (ACC).

[17]  Marco A. Moreno-Armendáriz,et al.  The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach , 2012, Int. J. Control.

[18]  R. Lopes Model Predictive Control applied to tracking and attitude stabilization of a VTOL quadrotor aircraft , 2011 .

[19]  Andrew Zulu,et al.  A Review of Control Algorithms for Autonomous Quadrotors , 2014, ArXiv.

[20]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[21]  Alejandro F. Villaverde,et al.  Adaptive Tracking Control for a Quad-Rotor , 2011 .

[22]  G. Raffo,et al.  An integral predictive / nonlinear H ∞ control structure for a quadrotor helicopter , 2009 .

[23]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[24]  Hongren Li,et al.  Kinematic Calibration of Parallel Robots for Docking Mechanism Motion Simulation , 2008, 2008 IEEE International Conference on Mechatronics and Automation.