Aldous-Broder theorem: extension to the non reversible case and new combinatorial proof
暂无分享,去创建一个
[1] David Bruce Wilson,et al. Generating random spanning trees more quickly than the cover time , 1996, STOC '96.
[2] Andrei Z. Broder,et al. Generating random spanning trees , 1989, 30th Annual Symposium on Foundations of Computer Science.
[3] G. Viennot. Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .
[4] R. Lyons,et al. A reverse Aldous–Broder algorithm , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[5] David Aldous,et al. The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees , 1990, SIAM J. Discret. Math..
[6] Doron Zeilberger,et al. A combinatorial approach to matrix algebra , 1985, Discret. Math..
[7] David Bruce Wilson,et al. How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.
[8] A. Járai. The Uniform Spanning Tree and related models , 2009 .
[9] Pierre Cartier,et al. Problemes combinatoires de commutation et rearrangements , 1969 .
[10] C. Krattenthaler,et al. THE THEORY OF HEAPS AND THE CARTIER–FOATA MONOID , 2022 .