Transactional Array Reconciliation Tomography for Precision Indoor Location

A novel system is described for precision indoor location and tracking of personnel inside a building using RF signals exchanged with reference units deployed outside the building without benefit of infrastructure or site survey. Localization in high multipath without multilateration by fusion of unidirectional signals using singular array reconciliation tomography is reviewed. The bidirectional signal fusion approach is introduced with transactional array reconciliation tomography. Underlying theory is developed, and performance evaluated with simulated and experimental data.

[1]  William R. Michalson,et al.  A Multi-Carrier Technique for Precision Geolocation for Indoor/Multipath Environments , 2003 .

[2]  James R. McCullough,et al.  Loran-C Latitude-Longitude Conversion at Sea : Programming Considerations , 1985 .

[3]  W. Yu,et al.  Environmental-Adaptive RSSI-Based Indoor Localization , 2009, IEEE Transactions on Automation Science and Engineering.

[4]  R. M. A. P. Rajatheva,et al.  On the Bivariate and Trivariate Rician Distributions , 2006, IEEE Vehicular Technology Conference.

[5]  P. Ho,et al.  System and algorithms for accurate indoor tracking using low-cost hardware , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[6]  Jennifer Blair Fire Escape , 2015 .

[7]  Majid Ahmadi,et al.  Robust indoor positioning using differential wi-fi access points , 2010, IEEE Transactions on Consumer Electronics.

[8]  J. Bard,et al.  An algebraic solution to the time difference of arrival equations , 1996, Proceedings of SOUTHEASTCON '96.

[9]  Mathias Friese,et al.  Multitone signals with low crest factor , 1997, IEEE Trans. Commun..

[10]  N. Jardak,et al.  Indoor Positioning Based on GPS-Repeaters: Performance Enhancement using an Open Code Loop Architecture , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Santiago Mazuelas,et al.  Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks , 2009, IEEE Journal of Selected Topics in Signal Processing.

[12]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[13]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  Kaveh Pahlavan,et al.  Measurement and Modeling of Ultrawideband TOA-Based Ranging in Indoor Multipath Environments , 2009, IEEE Transactions on Vehicular Technology.

[15]  H.G. Schantz A real-time location system using near-field electromagnetic ranging , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[16]  Davide Dardari,et al.  Range Estimation in Multicarrier Systems in the Presence of Interference: Performance Limits and Optimal Signal Design , 2011, IEEE Transactions on Wireless Communications.

[17]  Francois P. S. Chin,et al.  Selection of Frequency for Near Field Electromagnetic Ranging (NFER) Based on its Cramer–Rao Bound , 2007, IEEE Signal Processing Letters.

[18]  Maurizio A. Spirito,et al.  On the accuracy of cellular mobile station location estimation , 2001, IEEE Trans. Veh. Technol..

[19]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[20]  I. Guvenc,et al.  Ultra-wideband range estimation: Theoretical limits and practical algorithms , 2008, 2008 IEEE International Conference on Ultra-Wideband.

[21]  David Cyganski,et al.  FPGA-Based Co-processor for Singular Value Array Reconciliation Tomography , 2008, 2008 16th International Symposium on Field-Programmable Custom Computing Machines.

[22]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  Eric A. Wan,et al.  RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers , 2009, IEEE Journal of Selected Topics in Signal Processing.

[25]  Mikkel Baun Kjærgaard,et al.  Indoor Positioning Using GPS Revisited , 2010, Pervasive.

[26]  Matthew C Campbell Design of a Mobile Transceiver for Precision Indoor Location , 2010 .

[27]  V. Amendolare Synchronization in an Indoor Precision Location System , 2007 .

[28]  M. Luise,et al.  Fundamental issues in time-delay estimation of multicarrier signals with applications to next-generation GNSS , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[29]  Gérard Lachapelle,et al.  HSGPS Signal Analysis and Performance Under Various Indoor Conditions , 2003 .

[30]  Benjamin W Woodacre Geometric Autoconfiguration for Precision Personnel Location , 2010 .

[31]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[32]  Breen,et al.  Characterization of Multi-Carrier Locator Performance , 2004 .

[33]  M.R. Mahfouz,et al.  Investigation of High-Accuracy Indoor 3-D Positioning Using UWB Technology , 2008, IEEE Transactions on Microwave Theory and Techniques.

[34]  John A. Orr,et al.  WPI Precision Personnel Locator System , 2007 .

[35]  Per Enge,et al.  GPS and UWB for indoor navigation , 2001 .

[36]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.

[37]  David Cyganski,et al.  WPI Precision Personnel Locator System - Evaluation by First Responders , 2007 .

[38]  Dipankar Raychaudhuri,et al.  Frontiers of Wireless and Mobile Communications , 2012, Proceedings of the IEEE.

[39]  D. Cyganski,et al.  WPI precision personnel locator system: Inertial navigation supplementation , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.