Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation

Homogeneous Fokker?Planck?Landau equation denoted by FPLE is studied for Coulombian and isotropic distribution function, i.e. when the distribution function depends only on time and on the modulus of the velocity. We derive a new conservative and entropy decaying semi-discretized FPLE for which we prove the existence of global in time, positive. For the time-discretized equation, we give upper bound for the time step which guarantes positivity and entropy decay of the numerical solution.

[1]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[2]  N. V. Peskov,et al.  On the existence of a generalized solution of Landau's equation☆ , 1977 .

[3]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[4]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[5]  H. Cohn,et al.  Late core collapse in star clusters and the gravothermal instability , 1980 .

[6]  Stéphane Cordier,et al.  Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .

[7]  Mohammed Lemou SOLUTIONS EXACTES DE L'EQUATION DE FOKKER-PLANCK , 1994 .

[8]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[9]  V. Chuyanov,et al.  A completely conservative difference scheme for the two-dimensional Landau equation , 1980 .

[10]  G. Toscani,et al.  On the generalization of the Boltzmann H-theorem for a spatially homogeneous Maxwell gas , 1992 .

[11]  H. Cohn,et al.  Numerical integration of the Fokker-Planck equation and the evolution of star clusters , 1979 .

[12]  M. Pekker,et al.  Conservative difference schemes for the Fokker-Planck equation , 1984 .

[13]  Giuseppe Toscani,et al.  Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation , 1999 .

[14]  O. Larroche,et al.  Kinetic simulation of a plasma collision experiment , 1993 .