Convergence of a Numerical Scheme for Stratigraphic Modeling
暂无分享,去创建一个
[1] Roland Masson,et al. Multi‐lithology stratigraphic model under maximum erosion rate constraint , 2004 .
[2] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[3] John W. Harbaugh,et al. Simulating Clastic Sedimentation , 1989 .
[4] G. Tucker,et al. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study , 1994 .
[5] D. L. Turcotte,et al. Morphology of a delta prograding by bulk sediment transport , 1985 .
[6] Jan C. Rivenæs. Impact of sediment transport efficiency on large‐scale sequence architecture: results from stratigraphic computer simulation , 1997 .
[7] D. W. Peaceman. Fundamentals of numerical reservoir simulation , 1977 .
[8] Didier Granjeon,et al. Modélisation stratigraphique déterministe : conception et applications d'un modèle diffusif 3d multilithologique , 1996 .
[9] Didier Granjeon,et al. Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic Modeling , 1999 .
[10] Jan C. Rivenæs. Application of a dual‐lithology, depth‐dependent diffusion equation in stratigraphic simulation , 1992 .
[11] Marie-Hélène Vignal. Convergence of a finite volume scheme for an elliptic-hyperbolic system , 1996 .
[12] G. Chavent. Mathematical models and finite elements for reservoir simulation , 1986 .
[13] Marie Hélène Vignal,et al. Numerical and theoretical study of a Dual Mesh Method using finite volume schemes for two phase flow problems in porous media , 1998, Numerische Mathematik.
[14] Peter B. Flemings,et al. A synthetic stratigraphic model of foreland basin development , 1989 .
[15] Todd Arbogast,et al. A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .
[16] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[17] Thierry Gallouët,et al. Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperbolique , 1993 .