Unveiling the Properties of Metagratings via a Detailed Analytical Model for Synthesis and Analysis

We present detailed analytical modelling and in-depth investigation of wide-angle reflect-mode metagrating beam splitters. These recently introduced ultrathin devices are capable of implementing intricate diffraction engineering functionalities with only a single meta-atom per macro-period, making them considerably simpler to synthesize than conventional metasurfaces. We extend upon recent work and focus on electrically-polarizable metagratings, comprised of loaded conducting wires in front of a perfect elecric conductor, excited by transverse-electric polarized fields, which are more practical for planar fabrication. The derivation further relates the metagrating performance parameters to the individual meta-atom load, facilitating an efficient semianalytical synthesis scheme to determine the required conductor geometry for achieving optimal beam splitting. Subsequently, we utilize the model to analyze the effects of realistic conductor losses, reactance deviations, and frequency shifts on the device performance, and reveal that metagratings feature preferable working points, in which the sensitivity to these non-idealities is rather low. The analytical relations shed light on the physical origin of this phenomenon, associating it with fundamental interference processes taking place in the device. These results, verified via full-wave simulations of realistic physical structures, yield a set of efficient engineering tools, as well as profound physical intuition, for devising future metagrating devices, with immense potential for microwave, terahertz, and optical beam-manipulation applications.

[1]  James R. Wait REFLECTION FROM A WIRE GRID PARALLEL TO A CONDUCTING PLANE , 1954 .

[2]  G. Eleftheriades,et al.  Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control. , 2016, Optics letters.

[3]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[4]  G. Eleftheriades,et al.  Binary Huygens' metasurface: A simple and efficient retroreflector at near-grazing angles , 2017, 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[5]  Kota Ito,et al.  Highly efficient -1st-order reflection in Littrow mounted dielectric double-groove grating , 2013 .

[6]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[7]  I. V. Semchenko,et al.  Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption , 2015, 1502.06916.

[8]  Sergei A. Tretyakov,et al.  Optical metamirror: all-dielectric frequency-selective mirror with fully controllable reflection phase , 2016 .

[9]  Miguel Beruete,et al.  Planar Holographic Metasurfaces for Terahertz Focusing , 2015, Scientific Reports.

[10]  S. Reynaud,et al.  99% efficiency measured in the -1st order of a resonant grating. , 2005, Optics express.

[11]  Tony S. H. Lee,et al.  The design of cmos radio-frequency integrated circuits"cambridge university press , 1998 .

[12]  Ana Díaz-Rubio,et al.  From the generalized reflection law to the realization of perfect anomalous reflectors , 2016, Science Advances.

[13]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[14]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[15]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[16]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[17]  G. Eleftheriades,et al.  Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation , 2014, IEEE Transactions on Antennas and Propagation.

[18]  S. Tcvetkova,et al.  Perfect control of reflection and refraction using spatially dispersive metasurfaces , 2016, 1605.02044.

[19]  G. Eleftheriades,et al.  Perfect anomalous reflection with an aggressively discretized Huygens' metasurface , 2017, 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS).

[20]  M. Chen,et al.  Experimental verification of reflectionless wide-angle refraction via a bianisotropic Huygens' metasurface , 2017, 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS).

[21]  Marco Sabbadini,et al.  Synthesis of Modulated-Metasurface Antennas With Amplitude, Phase, and Polarization Control , 2016, IEEE Transactions on Antennas and Propagation.

[22]  A. Grbic,et al.  Analysis and synthesis of cascaded metasurfaces using wave matrices , 2017 .

[23]  G. Eleftheriades,et al.  Arbitrary Antenna Arrays Without Feed Networks Based on Cavity-Excited Omega-Bianisotropic Metasurfaces , 2017, IEEE Transactions on Antennas and Propagation.

[24]  T. Itoh,et al.  Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances , 2017, Scientific Reports.

[25]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[26]  A. Monti,et al.  Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[27]  Andrea Alù,et al.  Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control. , 2017, Physical review letters.

[28]  George V. Eleftheriades,et al.  Huygens' metasurfaces via the equivalence principle: design and applications , 2016 .

[29]  Brian O. Raeker,et al.  Verification of Arbitrary Radiation Pattern Control Using a Cylindrical Impedance Metasurface , 2017, IEEE Antennas and Wireless Propagation Letters.

[30]  Brian O. Raeker,et al.  Arbitrary Transformation of Radiation Patterns Using a Spherical Impedance Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[31]  Y. Kivshar,et al.  Experimental realisation of all-dielectric bianisotropic metasurfaces , 2016 .

[32]  S A Tretyakov,et al.  Functional Metamirrors Using Bianisotropic Elements , 2015 .

[33]  D. Abbott,et al.  Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces. , 2017, Optics letters.

[34]  F. Lederer,et al.  Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications , 2015 .

[35]  A. Alú,et al.  Wave-front Transformation with Gradient Metasurfaces , 2016 .

[36]  Y. Kivshar,et al.  All-dielectric reciprocal bianisotropic nanoparticles , 2015, 1508.06965.

[37]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[38]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[39]  Christophe Caloz,et al.  Synthesis of electromagnetic metasurfaces: principles and illustrations , 2015, 1510.05997.

[40]  Hiroki Wakatsuchi,et al.  Waveform-dependent absorbing metasurfaces. , 2013, Physical review letters.

[41]  Anthony Grbic,et al.  Bianisotropic Metasurfaces for Optimal Polarization Control: Analysis and Synthesis , 2014 .

[42]  George V. Eleftheriades,et al.  Reflectionless Wide-Angle Refracting Metasurfaces , 2016, IEEE Antennas and Wireless Propagation Letters.

[43]  C. Holloway,et al.  Averaged transition conditions for electromagnetic fields at a metafilm , 2003 .

[44]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[45]  Martin Wegener,et al.  Eliminating Scattering Loss in Anomalously Reflecting Optical Metasurfaces , 2017 .

[46]  F. Bilotti,et al.  Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces , 2017 .

[47]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[48]  G. Eleftheriades,et al.  Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. , 2013, Optics express.

[49]  D. Sounas,et al.  Metasurfaces with engineered reflection and transmission: Optimal designs through coupled-mode analysis , 2016, 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[50]  G. Eleftheriades,et al.  Floquet-Bloch analysis of refracting Huygens metasurfaces , 2014 .

[51]  R. Gonzalo,et al.  Reconfigurable Artificial Surfaces Based on Impedance Loaded Wires Close to a Ground Plane , 2012, IEEE Transactions on Antennas and Propagation.

[52]  George V. Eleftheriades,et al.  Arbitrary Power-Conserving Field Transformations With Passive Lossless Omega-Type Bianisotropic Metasurfaces , 2016, IEEE Transactions on Antennas and Propagation.

[53]  Xinan Liang,et al.  A Metalens with a Near-Unity Numerical Aperture. , 2018, Nano letters.

[54]  D Decker,et al.  High-efficiency multilayer dielectric diffraction gratings. , 1995, Optics letters.

[55]  Ariel Epstein,et al.  Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures , 2015, Nature Communications.

[56]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[57]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[58]  R. Fleury,et al.  Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain , 2015 .

[59]  Ariel Epstein,et al.  Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection. , 2016, Physical review letters.

[60]  Anthony Grbic,et al.  Planar Lens Antennas of Subwavelength Thickness: Collimating Leaky-Waves With Metasurfaces , 2015, IEEE Transactions on Antennas and Propagation.

[61]  Xiang Wan,et al.  Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles , 2015, Scientific Reports.