Decomposing Generalized Bent and Hyperbent Functions

In this paper, we introduce generalized hyperbent functions from <inline-formula> <tex-math notation="LaTeX">$ {\mathbb F}_{2^{n}}$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$ {\mathbb Z}_{2^{k}}$ </tex-math></inline-formula>, and investigate decompositions of generalized (hyper)bent functions. We show that generalized (hyper)bent functions <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">$ {\mathbb F}_{2^{n}}$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$ {\mathbb Z}_{2^{k}}$ </tex-math></inline-formula> consist of components which are generalized (hyper)bent functions from <inline-formula> <tex-math notation="LaTeX">$ {\mathbb F}_{2^{n}}$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$ {\mathbb Z}_{2^{k^\prime }}$ </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX">$k^\prime < k$ </tex-math></inline-formula>. For even <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, most notably we show that the g-hyperbentness of <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> is equivalent to the hyperbentness of the components of <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula> with some conditions on the Walsh–Hadamard coefficients. For odd <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, where the associated Boolean functions are bent.

[1]  Sihem Mesnager,et al.  Four decades of research on bent functions , 2016, Des. Codes Cryptogr..

[2]  Sugata Gangopadhyay,et al.  Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform , 2012, IEEE Transactions on Information Theory.

[3]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[4]  Pantelimon Stanica,et al.  Partial spread and vectorial generalized bent functions , 2017, Des. Codes Cryptogr..

[5]  Xiaohu Tang,et al.  Characterization of Negabent Functions and Construction of Bent-Negabent Functions With Maximum Algebraic Degree , 2013, IEEE Transactions on Information Theory.

[6]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[7]  Patrick Solé,et al.  Connections between Quaternary and Binary Bent Functions , 2009, IACR Cryptol. ePrint Arch..

[8]  Petr Lisonek An Efficient Characterization of a Family of Hyperbent Functions , 2011, IEEE Transactions on Information Theory.

[9]  Enes Pasalic,et al.  Generalized Bent Functions - Some General Construction Methods and Related Necessary and Sufficient Conditions , 2015, Cryptography and Communications.

[10]  CarletC. Z2k-linear codes , 1998 .

[11]  Pantelimon Stanica,et al.  Generalized Bent Functions and Their Gray Images , 2016, WAIFI.

[12]  Keqin Feng,et al.  Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions , 2017, IEEE Transactions on Information Theory.

[13]  Natalia Tokareva,et al.  Bent Functions: Results and Applications to Cryptography , 2015 .

[14]  Pantelimon Stanica,et al.  Cryptographic Boolean Functions and Applications , 2009 .

[15]  CarletClaude,et al.  Four decades of research on bent functions , 2016 .

[16]  Alexander Pott,et al.  Nonlinear functions in abelian groups and relative difference sets , 2004, Discret. Appl. Math..

[17]  Anne Canteaut,et al.  Attacks Against Filter Generators Exploiting Monomial Mappings , 2016, FSE.

[18]  Natalia N. Tokareva,et al.  Generalizations of bent functions. A survey , 2011, IACR Cryptol. ePrint Arch..

[19]  Matthew G. Parker,et al.  On Boolean Functions Which Are Bent and Negabent , 2007, SSC.

[20]  Amr M. Youssef,et al.  Hyper-bent Functions , 2001, EUROCRYPT.

[21]  Wilfried Meidl A secondary construction of bent functions, octal gbent functions and their duals , 2018, Math. Comput. Simul..

[22]  Sugata Gangopadhyay,et al.  Bent and generalized bent Boolean functions , 2013, Des. Codes Cryptogr..

[23]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[24]  Sugata Gangopadhyay,et al.  A Note on Generalized Bent Criteria for Boolean Functions , 2013, IEEE Transactions on Information Theory.

[25]  Sihem Mesnager,et al.  Bent Functions: Fundamentals and Results , 2016 .

[26]  Claude Carlet,et al.  Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..