Uncertainty Modeling in Single Machine Scheduling Problems. A Survey

[1]  Gang Yu,et al.  Single machine scheduling under potential disruption , 2007, Oper. Res. Lett..

[2]  Federico Della Croce,et al.  Complexity of single machine scheduling problems under scenario-based uncertainty , 2008, Oper. Res. Lett..

[3]  Adam Kasperski Minimizing maximal regret in the single machine sequencing problem with maximum lateness criterion , 2005, Oper. Res. Lett..

[4]  Adam Kasperski,et al.  On two single machine scheduling problems with fuzzy processing times and fuzzy due dates , 2003, Eur. J. Oper. Res..

[5]  Panagiotis Kouvelis,et al.  Robust scheduling to hedge against processing time uncertainty in single-stage production , 1995 .

[6]  Willy Herroelen,et al.  The complexity of machine scheduling for stability with a single disrupted job , 2005, Oper. Res. Lett..

[7]  Jerzy Józefczyk,et al.  Robust min–max regret scheduling to minimize the weighted number of late jobs with interval processing times , 2020, Ann. Oper. Res..

[8]  Wojciech Bożejko,et al.  Robust Single Machine Scheduling with Random Blocks in an Uncertain Environment , 2020, ICCS.

[9]  Jordi Pereira,et al.  The robust (minmax regret) single machine scheduling with interval processing times and total weighted completion time objective , 2016, Comput. Oper. Res..

[10]  Peng Jia,et al.  Robust single machine scheduling problem with uncertain job due dates for industrial mass production , 2020 .

[11]  Adam Kasperski Some General Properties of a Fuzzy Single Machine Scheduling Problem , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Yuri N. Sotskov,et al.  Minimizing total weighted flow time of a set of jobs with interval processing times , 2009, Math. Comput. Model..

[13]  H. Prade Using fuzzy set theory in a scheduling problem: A case study , 1979 .

[14]  Marianthi G. Ierapetritou,et al.  Process scheduling under uncertainty: Review and challenges , 2008, Comput. Chem. Eng..

[15]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[16]  Han Hoogeveen,et al.  Minimizing the number of late jobs in a stochastic setting using a chance constraint , 2008, J. Sched..

[17]  Ignacio E. Grossmann,et al.  Approximation to Multistage Stochastic Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty , 2004 .

[18]  M. Ierapetritou,et al.  Robust short-term scheduling of multiproduct batch plants under demand uncertainty , 2001 .

[19]  Wojciech Bożejko,et al.  Flowshop scheduling of construction processes with uncertain parameters , 2019, Archives of Civil and Mechanical Engineering.

[20]  T.-C. Lai,et al.  Sequencing with uncertain numerical data for makespan minimisation , 1999, J. Oper. Res. Soc..

[21]  Sanjay Mehta,et al.  Predictable scheduling of a single machine subject to breakdowns , 1999, Int. J. Comput. Integr. Manuf..

[22]  Jian Yang,et al.  On the Robust Single Machine Scheduling Problem , 2002, J. Comb. Optim..

[23]  Etienne E. Kerre,et al.  Defuzzification: criteria and classification , 1999, Fuzzy Sets Syst..

[24]  George L. Vairaktarakis,et al.  Robust scheduling of a two-machine flow shop with uncertain processing times , 2000 .

[25]  Ali Allahverdi,et al.  Single machine scheduling problem with interval processing times to minimize mean weighted completion time , 2014, Comput. Oper. Res..

[26]  Maciej Drwal Robust scheduling to minimize the weighted number of late jobs with interval due-date uncertainty , 2018, Comput. Oper. Res..

[27]  Ihsan Sabuncuoglu,et al.  Robustness and stability measures for scheduling: single-machine environment , 2008 .

[28]  Wojciech Bozejko,et al.  Robustness of the Uncertain Single Machine Total Weighted Tardiness Problem with Elimination Criteria Applied , 2018, DepCoS-RELCOMEX.

[29]  H. M. Soroush Scheduling stochastic jobs on a single machine to minimize weighted number of tardy jobs , 2013 .

[30]  Igor Averbakh,et al.  Complexity of minimizing the total flow time with interval data and minmax regret criterion , 2006, Discret. Appl. Math..

[31]  Wojciech Bożejko,et al.  Stable Scheduling with Random Processing Times , 2014 .

[32]  Frank Werner,et al.  Optimal makespan scheduling with given bounds of processing times , 1997 .

[33]  Cerry M. Klein,et al.  Minimizing the expected number of tardy jobs when processing times are normally distributed , 2002, Oper. Res. Lett..

[34]  R. L. Daniels,et al.  β-Robust scheduling for single-machine systems with uncertain processing times , 1997 .

[35]  József Váncza,et al.  A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to minimize the value-at-risk , 2018, Flexible Services and Manufacturing Journal.

[36]  Reha Uzsoy,et al.  Predictable scheduling of a job shop subject to breakdowns , 1998, IEEE Trans. Robotics Autom..

[37]  M. Duran Toksarı,et al.  Single machine scheduling problems under position-dependent fuzzy learning effect with fuzzy processing times , 2017 .

[38]  Mieczyslaw Wodecki,et al.  Sampling Method for the Flow Shop with Uncertain Parameters , 2017, CISIM.

[39]  Y. Sotskov,et al.  REALIZATION OF AN OPTIMAL SCHEDULE FOR THE TWO-MACHINE FLOW-SHOP WITH INTERVAL JOB PROCESSING TIMES , 2007 .

[40]  Xian Zhou,et al.  Single-Machine Scheduling with Exponential Processing Times and General Stochastic Cost Functions , 2005, J. Glob. Optim..

[41]  H. Ishii,et al.  Fuzzy due-date scheduling problem with fuzzy processing time , 1999 .

[42]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[43]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[44]  M. Wodecki,et al.  Stability of scheduling with random processing times on one machine , 2012 .

[45]  Byung-Cheon Choi,et al.  Min-max regret version of a scheduling problem with outsourcing decisions under processing time uncertainty , 2016, Eur. J. Oper. Res..

[46]  Kenneth N. Brown,et al.  Scheduling with uncertain durations: Modeling beta-robust scheduling with constraints , 2009, Comput. Oper. Res..

[47]  Ali Allahverdi,et al.  Heuristics for the two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times , 2010, Comput. Math. Appl..

[48]  Reha Uzsoy,et al.  Predictable scheduling of a single machine with breakdowns and sensitive jobs , 1999 .

[49]  J. Vondrák Probabilistic Methods in Combinatorial and Stochastic Optimization , 2005 .

[50]  Kudret Demirli,et al.  Fuzzy scheduling of a build-to-order supply chain , 2008 .

[51]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[52]  Melvyn Sim,et al.  Robust Discrete Optimization , 2003 .

[53]  Reza Tavakkoli-Moghaddam,et al.  The use of a fuzzy multi-objective linear programming for solving a multi-objective single-machine scheduling problem , 2010, Appl. Soft Comput..

[54]  Wojciech Bożejko,et al.  Stable scheduling of single machine with probabilistic parameters , 2017 .

[55]  Xiaopeng Zhang,et al.  Stochastic single-machine scheduling with random resource arrival times , 2017, International Journal of Machine Learning and Cybernetics.

[56]  Dehua Xu,et al.  Setting due dates to minimize the total weighted possibilistic mean value of the weighted earliness-tardiness costs on a single machine , 2011, Comput. Math. Appl..

[57]  Adam Kasperski,et al.  Minimizing maximum lateness in a single machine scheduling problem with fuzzy processing times and fuzzy due dates , 2001 .

[58]  Xian Zhou,et al.  Optimal Stochastic Scheduling , 2014 .

[59]  Jeffrey W. Herrmann,et al.  Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods , 2003, J. Sched..

[60]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[61]  Adam Kurpisz,et al.  Approximating a two-machine flow shop scheduling under discrete scenario uncertainty , 2012, Eur. J. Oper. Res..

[62]  Ali Allahverdi,et al.  Flowshop scheduling problem to minimize total completion time with random and bounded processing times , 2004, J. Oper. Res. Soc..

[63]  Ching-Jong Liao,et al.  Single machine scheduling problem with fuzzy due date and processing time , 1998 .

[64]  Chun-Yi Kuo,et al.  RELATIVE ROBUSTNESS FOR SINGLE-MACHINE SCHEDULING PROBLEM WITH PROCESSING TIME UNCERTAINTY , 2002 .

[65]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[66]  Efstratios N. Pistikopoulos,et al.  Global Optimization for Stochastic Planning, Scheduling and Design Problems , 1996 .

[67]  Dingwei Wang,et al.  The single machine ready time scheduling problem with fuzzy processing times , 2002, Fuzzy Sets Syst..