Atomic charges derived from semiempirical methods

It is demonstrated that semiempirical methods give electrostatic potential (ESP) derived atomic point charges that are in reasonable agreement with ab initio ESP charges. Furthermore, we find that MNDO ESP charges are superior to AM1 ESP charges in correlating with ESP charges derived from the 6‐31G* basis set. Thus, it is possible to obtain 6‐31G* quality point charges by simply scaling MNDO ESP charges. The charges are scaled in a linear (y = Mx) manner to conserve charge. In this way researchers desiring to carry out force field simulations or minimizations can obtain charges by using MNDO, which requires much less computer time than the corresponding 6‐31G* calculation.

[1]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[2]  Michael C. Zerner,et al.  Calculation of molecular electrostatic potentials within the indo framework , 1985 .

[3]  C. Giessner-Prettre,et al.  On the molecular electrostatic potentials obtained with CNDO and INDO wave functions , 1974 .

[4]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[5]  Ji-Min Yan,et al.  Point-Charge Models for Molecules Derived from Least-Squares Fitting of the Electric Potential , 1988 .

[6]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[7]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[8]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[9]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[10]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[11]  Arnold T. Hagler,et al.  Crystal packing, hydrogen bonding, and the effect of crystal forces on molecular conformation , 1980 .

[12]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[13]  Michel Dupuis,et al.  Computation of electron repulsion integrals using the rys quadrature method , 1983 .

[14]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[15]  J. Pople,et al.  Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems , 1966 .

[16]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[17]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[18]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[19]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[20]  J. Pople,et al.  Approximate Self‐Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap , 1965 .

[21]  C. Giessner-Prettre,et al.  Molecular electrostatic potentials: Comparison of ab initio and CNDO results , 1972 .

[22]  S H Kim,et al.  Determinations of atomic partial charges for nucleic acid constituents from x‐ray diffraction data. I. 2′‐Deoxycytidine‐5′‐monophosphate , 1985, Biopolymers.

[23]  Harel Weinstein,et al.  Analytical calculation of atomic and molecular electrostatic potentials from the Poisson equation , 1973 .

[24]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[25]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[26]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[27]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[28]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[29]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[30]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[31]  P. C. Hariharan,et al.  The effect of d-functions on molecular orbital energies for hydrocarbons , 1972 .

[32]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[33]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[34]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .