GPS and Space-Based Geodetic Methods

Space-based geodetic methods such as the Global Positioning System (GPS) have revolutionized our view of the Earth, enabling us to observe plate tectonics in progress, right now as it happens. The relative positions between any pair of geodetic stations in the world can be determined with a precision measured in millimeters; thus, the long-term movement of the Earth's surface can be monitored to within 1 mm Year − 1 . Dense networks of GPS stations are now being used to map the rate of strain in the Earth's crust in plate boundary regions. The Earth's geometric and gravitational shapes and its orientation in space are being monitored and inverted to determine the redistribution of geophysical fluids on or near the Earth's surface, including the ocean and atmosphere, cryosphere, and the terrestrial hydrosphere. All of this has been made possible since the development of space-based geodetic techniques in the 1970s and 1980s, starting with satellite laser ranging and very long baseline interferometry. This chapter provides a summary of the developments that led to this astonishing new geophysical tool and also introduces the fundamentals of space geodesy and how it is being applied to geophysical research, with examples provided from plate tectonics, the earthquake cycle, and surface mass redistribution.

[1]  M. Rothacher,et al.  Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites , 2003 .

[2]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[3]  W. Holt,et al.  Earthquake strain rates and instantaneous relative motions within central and eastern Asia , 1995 .

[4]  W. Hammond The Ghost of an Earthquake , 2005, Science.

[5]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[6]  T. Wallace,et al.  The active tectonics of the eastern Himalayan syntaxis and surrounding regions , 1991 .

[7]  B. Chao,et al.  Snow load effect on the Earth's rotation and gravitational field, 1979–1985 , 1987 .

[8]  Yehuda Bock,et al.  Seismic wave observations with the Global Positioning System , 2001 .

[9]  Peter J. Clarke,et al.  Inversion of Earth's changing shape to weigh sea level in static equilibrium with surface mass redistribution , 2003 .

[10]  G. Blewitt,et al.  Project helps constrain continental dynamics and seismic hazards , 2005 .

[11]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[12]  H. Fliegel,et al.  Global Positioning System Radiation Force Model for geodetic applications , 1992 .

[13]  Hans-Peter Plag,et al.  Rapid determination of earthquake magnitude using GPS for tsunami warning systems , 2006 .

[14]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[15]  W. Holt,et al.  A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data , 1993 .

[16]  J. Jackson,et al.  A comparison of satellite laser ranging and seismicity data in the Aegean Region , 1994 .

[17]  W. Gurtner,et al.  The IGGOS viewed from the Space Geodetic Services , 2005 .

[18]  Pascal Willis,et al.  The International DORIS Service , 2005 .

[19]  W. Prescott,et al.  Global Positioning System Measurements for Crustal Deformation: Precision and Accuracy , 1989, Science.

[20]  Peter F. MacDoran,et al.  Satellite emission radio interferometric earth surveying series—GPS geodetic system , 1979 .

[21]  Kurt Lambeck,et al.  Geophysical geodesy : the slow deformations of the earth Lambeck. , 1988 .

[22]  N. K. Pavlis,et al.  Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .

[23]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[24]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[25]  M. Heflin,et al.  Atmospheric pressure loading effects on Global Positioning System coordinate determinations , 1994 .

[26]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[27]  A. Cazenave,et al.  Temporal Variations of the Earth Gravity Field For 1985–1989 Derived From Lageos , 1993 .

[28]  Timothy H. Dixon,et al.  Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System , 1988 .

[29]  Timothy H. Dixon,et al.  REVEL: A model for Recent plate velocities from space geodesy , 2002 .

[30]  Peter Steigenberger,et al.  Reprocessing of a global GPS network , 2006 .

[31]  Stephen M. Lichten,et al.  Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements , 1990 .

[32]  F. Pollitz Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model , 2003 .

[33]  Boudewijn Ambrosius,et al.  Scientific objectives of current and future WEGENER activities , 1998 .

[34]  I. Shapiro Fourth Test of General Relativity , 1964 .

[35]  James L. Davis,et al.  Continuous GPS measurements of contemporary deformation across the Northern Basin and Range Province , 1998 .

[36]  Markus Rothacher,et al.  Integrated Global Geodetic Observing System (IGGOS) - science rationale , 2005 .

[37]  Thomas A. Herring,et al.  Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays , 2006 .

[38]  Alan G. Evans,et al.  THE GLOBAL POSITIONING SYSTEM GEODESY ODYSSEY , 2002 .

[39]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[40]  Gerd Gendt,et al.  The International GPS Service: Celebrating the 10th anniversary and looking to the next decade , 2005 .

[41]  Geoffrey Blewitt,et al.  Evidence for Deep Magma Injection Beneath Lake Tahoe, Nevada-California , 2004, Science.

[42]  W. Holt,et al.  Velocity gradients in the northern Indian Ocean inferred from earthquake moment tensors and relative plate velocities , 1995 .

[43]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[44]  Neil Ashby,et al.  The Sagnac Effect in the Global Positioning System , 2004 .

[45]  Michael B. Heflin,et al.  Global geodesy using GPS without fiducial sites , 1992 .

[46]  David E. Smith,et al.  Earth scale defined by modern satellite ranging observations , 1999 .

[47]  R. Nerem,et al.  Geophysical interpretation of observed geocenter variations , 1999 .

[48]  B. Hager,et al.  The effects of rheological layering on post-seismic deformation , 2006 .

[49]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[50]  D. W. Allan,et al.  Coordinate Time On and Near the Earth , 1984 .

[51]  Slava G. Turyshev,et al.  Progress in lunar laser ranging tests of relativistic gravity. , 2004 .

[52]  J. Jackson,et al.  The horizontal velocity field in the deforming Aegean Sea region determined from the moment tensors of earthquakes , 1992 .

[53]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[54]  James L. Davis,et al.  GPS APPLICATIONS FOR GEODYNAMICS AND EARTHQUAKE STUDIES , 1997 .

[55]  C. C. Counselman,et al.  Erratum to: Miniature interferometer terminals for Earth Surveying , 1979 .

[56]  J. Langbein,et al.  Improved stability of a deeply anchored geodetic monument for deformation monitoring , 1995 .

[57]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[58]  F. Webb,et al.  An Introduction to the GIPSY/OASIS-II , 1993 .

[59]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[60]  J. C. Savage STRAIN ACCUMULATION IN WESTERN UNITED STATES , 1983 .

[61]  Axel Nothnagel,et al.  The terrestrial reference frame and the dynamic Earth , 2001 .

[62]  K. Nordtvedt Lunar laser ranging: A Comprehensive probe of postNewtonian gravity , 2003, gr-qc/0301024.

[63]  D. S. MacMillan,et al.  Atmospheric gradients from very long baseline interferometry observations , 1995 .

[64]  Duncan Carr Agnew,et al.  Application of the global positioning system to crustal deformation measurement: 1. Precision and accuracy , 1991 .

[65]  Michael B. Heflin,et al.  The effect of the second order GPS ionospheric correction on receiver positions , 2003 .

[66]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[67]  Timothy H. Dixon,et al.  Paleoseismology and Global Positioning System: Earthquake-cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone , 2003 .

[68]  Erricos C. Pavlis,et al.  Contemporary global horizontal crustal motion , 1994 .

[69]  G. Blewitt,et al.  On the determination of a global strain rate model , 2000 .

[70]  Vincenza Luceri,et al.  Estimation of low degree geopotential coefficients using SLR data , 1998 .

[71]  Jeffrey T. Freymueller,et al.  Global Plate Velocities from the Global Positioning System , 1997 .

[72]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[73]  F. Webb,et al.  Application of the global positioning system to crustal deformation measurement: 2. The influence of errors in orbit determination networks , 1991 .

[74]  C. Thornton,et al.  Constraints on Pacific Plate Kinematics and Dynamics with Global Positioning System Measurements , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[75]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[76]  James Jackson,et al.  The accommodation of Arabia‐Eurasia Plate convergence in Iran , 1995 .

[77]  Peter J. Clarke,et al.  Degree‐2 harmonics of the Earth's mass load estimated from GPS and Earth rotation data , 2004 .

[78]  Byron D. Tapley,et al.  Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations , 1999 .

[79]  Gunnar Elgered,et al.  Ground‐based measurement of gradients in the “wet” radio refractivity of air , 1993 .

[80]  Yehuda Bock,et al.  Instantaneous geodetic positioning at medium distances with the Global Positioning System , 2000 .

[81]  Gerald L. Mader,et al.  GPS Antenna Calibration at the National Geodetic Survey , 1999, GPS Solutions.

[82]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[83]  Falk Amelung,et al.  Postseismic Mantle Relaxation in the Central Nevada Seismic Belt , 2005, Science.

[84]  G. Beutler,et al.  The New IAG Structure , 2004 .

[85]  Ice mass loss in Antarctica and stiff lower mantle viscosity inferred from the long wavelength time dependent gravity field , 2002 .

[86]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[87]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[88]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[89]  J. Freymueller,et al.  The extended tracking network and indications of baseline precision and accuracy in the north Andes , 1990 .

[90]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[91]  Fred F. Pollitz,et al.  Gravitational viscoelastic postseismic relaxation on a layered spherical Earth , 1997 .

[92]  Paul Bodin,et al.  Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake , 2003, Science.

[93]  Alan E. E. Rogers,et al.  Geodesy by radio interferometry: Determination of a 1.24‐km base line vector with ∼5‐mm repeatability , 1978 .

[94]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[95]  J. Williams,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[96]  Axel Nothnagel,et al.  IVS and its important role in the maintenance of the global reference systems , 2002 .

[97]  Bruce R. Schupler,et al.  Signal Characteristics of GPS User Antennas , 1994 .

[98]  R. Bilham Earthquakes and sea level: Space and terrestrial metrology on a changing planet , 1991 .

[99]  Yehuda Bock,et al.  Detection of arbitrarily large dynamic ground motions with a dense high‐rate GPS network , 2004 .

[100]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[101]  Bradford H. Hager,et al.  Large‐scale heterogeneities in the lower mantle , 1977 .

[102]  C. Counselman,et al.  Astronomical Applications of Differential Interferometry , 1972, Science.

[103]  G. Di Donato,et al.  The SLR secular gravity variations and their impact on the inference of mantle rheology and lithospheric thickness , 2001 .

[104]  F. Wyatt Displacement of surface monuments: Horizontal motion , 1982 .

[105]  Bertrand Meyer,et al.  Slip partitioning in the Sea of Marmara pull‐apart determined from GPS velocity vectors , 2002 .

[106]  M. Watkins,et al.  Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy , 1999 .

[107]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[108]  Galina Dick,et al.  Impact of GPS satellite antenna offsets on scale changes in global network solutions , 2005 .

[109]  H. Plag,et al.  On the possibilty of global and regional inversion of exogenic deformations for mechanical properties of the Earth's interior , 1996 .

[110]  W. Holt,et al.  Intraplate deformation in the Japanese Islands: A kinematic study of intraplate deformation at a convergent plate margin , 1995 .

[111]  John C. Ries,et al.  The International Doris Service (IDS) , 2004 .

[112]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[113]  A. Haines Calculating velocity fields across plate boundaries from observed shear rates , 1982 .

[114]  R. Bennett,et al.  Contemporary strain rates in the northern Basin and Range province from GPS data , 2003 .

[115]  Yoaz E. Bar-Sever,et al.  A new model for GPS yaw attitude , 1996 .

[116]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 1. Theory , 1994 .

[117]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[118]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake , 1997 .

[119]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. , 1994 .

[120]  Emma M. Hill,et al.  Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network , 2006 .

[121]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[122]  H. Fliegel,et al.  Solar force modeling of block IIR Global Positioning System satellites , 1996 .

[123]  James L. Davis,et al.  Assessment of GPS velocity accuracy for the Basin and Range Geodetic Network (BARGEN) , 2003 .

[124]  Hyung-Jin Rim,et al.  Modeling GPS satellite attitude variation for precise orbit determination , 1996 .

[125]  W. Holt Flow fields within the Tonga Slab determined from the moment tensors of deep earthquakes , 1995 .

[126]  W. Holt,et al.  The kinematics of northern South Island, New Zealand, determined from geologic strain rates , 1995 .

[127]  Stephen M. Lichten,et al.  Strategies for high-precision Global Positioning System orbit determination , 1987 .

[128]  W. Spakman,et al.  Inversion of relative motion data for estimates of the velocity gradient field and fault slip , 2002 .

[129]  Charles C. Counselman,et al.  Interferometric analysis of GPS phase observations , 1986 .

[130]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[131]  James L. Davis,et al.  Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data , 1990 .

[132]  P. Steigenberger,et al.  Absolute phase center corrections of satellite and receiver antennas , 2005 .

[133]  B. Hager,et al.  Postseismic relaxation across the Central Nevada Seismic Belt , 2003 .

[134]  W. Holt,et al.  Deformation kinematics in the western United States determined from Quaternary fault slip rates and recent geodetic data , 1999 .

[135]  M. Watkins,et al.  Observations of tidally coherent diurnal and semidiurnal variations in the geocenter , 1997 .

[136]  William E. Holt,et al.  Velocity fields in deforming Asia from the inversion of earthquake-released strains , 1993 .

[137]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1992 .

[138]  R. Bennett,et al.  Dynamics of Plate Boundary Fault Systems from Basin and Range Geodetic Network (BARGEN) and Geologic Data , 2000 .

[139]  Geoffrey Blewitt,et al.  An Automatic Editing Algorithm for GPS data , 1990 .

[140]  G. Blewitt,et al.  Co‐ and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data , 2006 .

[141]  Geoffrey Blewitt The Fixed Point Theorem of Ambiguity Resolution for Precise Point Positioning of GPS Networks: Theory and Applications , 2006 .

[142]  E. Grafarend,et al.  The spacetime gravitational field of a deformable body , 1997 .

[143]  Robert W. King,et al.  Measurement of Crustal Deformation Using the Global Positioning System , 1991 .

[144]  A. John Haines,et al.  An integrated global model of present‐day plate motions and plate boundary deformation , 2003 .

[145]  Penina Axelrad,et al.  Modified sidereal filtering: Implications for high‐rate GPS positioning , 2004 .

[146]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[147]  Timothy H. Dixon,et al.  An introduction to the global positioning system and some geological applications , 1991 .