Bayes-Stein Estimation for Portfolio Analysis

In portfolio analysis, uncertainty about parameter values leads to suboptimal portfolio choices. The resulting loss in the investor's utility is a function of the particular estimator chosen for expected returns. So, this is a problem of simultaneous estimation of normal means under a well-specified loss function. In this situation, as Stein has shown, the classical sample mean is inadmissible. This paper presents a simple empirical Bayes estimator that should outperform the sample mean in the context of a portfolio. Simulation analysis shows that these Bayes-Stein estimators provide significant gains in portfolio selection problems.

[1]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[2]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[3]  C. Stein Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .

[4]  Arnold Zellner,et al.  Prediction and Decision Problems in Regression Models from the Bayesian Point of View , 1965 .

[5]  L. Brown On the Admissibility of Invariant Estimators of One or More Location Parameters , 1966 .

[6]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[7]  G. Frankfurter,et al.  Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances , 1971, Journal of Financial and Quantitative Analysis.

[8]  R. C. Merton,et al.  An Analytic Derivation of the Efficient Portfolio Frontier , 1972, Journal of Financial and Quantitative Analysis.

[9]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[10]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[11]  Oldrich A Vasicek,et al.  A NOTE ON USING CROSS‐SECTIONAL INFORMATION IN BAYESIAN ESTIMATION OF SECURITY BETAS , 1973 .

[12]  J. Dickinson,et al.  The Reliability of Estimation Procedures in Portfolio Analysis , 1974, Journal of Financial and Quantitative Analysis.

[13]  C. B. Barry PORTFOLIO ANALYSIS UNDER UNCERTAIN MEANS, VARIANCES, AND COVARIANCES , 1974 .

[14]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[15]  Lawrence D. Brown,et al.  Estimation with Incompletely Specified Loss Functions (the Case of Several Location Parameters) , 1975 .

[16]  M. Blume,et al.  BETAS AND THEIR REGRESSION TENDENCIES , 1975 .

[17]  Bradley Efron,et al.  Families of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1976 .

[18]  Vijay S. Bawa,et al.  The effect of estimation risk on optimal portfolio choice , 1976 .

[19]  Eliminating Singularities of Stein-Type Estimators of Location Vectors , 1976 .

[20]  P. Jagers,et al.  Studies in Bayesian econometrics and statistics: S.E. Fienberg and A. Zellner, eds., In honor of Leonard J. Savage (North-Holland, Amsterdam, 1975) , 1977 .

[21]  Minimax estimation of a multivariate normal mean under polynomial loss , 1978 .

[22]  L. Brown A Heuristic Method for Determining Admissibility of Estimators--With Applications , 1979 .

[23]  Stephen J. Brown,et al.  Estimation risk and optimal portfolio choice , 1980 .

[24]  Stephen J. Brown The Effect of Estimation Risk on Capital Market Equilibrium , 1979, Journal of Financial and Quantitative Analysis.

[25]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[26]  James O. Berger Statistical Decision Theory , 1980 .

[27]  J. Jobson,et al.  Estimation for Markowitz Efficient Portfolios , 1980 .

[28]  James O. Berger,et al.  Selecting a Minimax Estimator of a Multivariate Normal Mean , 1982 .

[29]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[30]  Philippe Jorion International Portfolio Diversification with Estimation Risk , 1985 .