Plasmonic nano-lasers

Development of a coherent, intense, ultrafast source of optical energy focused to a nano-scale area enables the integration of thousands of them on a single chip to power an optical computer. Very intense, ultrafast, temporarily coherent pulses of nano-localized optical fields are thus of fundamental interest and have many applications in integrated nano-photonics. This paper reviews the mechanism associated with plasmonic nano-lasers and general guidelines pertaining to device design. Recent results show that a plasmonic nano-laser effectively overcomes many of the difficulties and limitations of plasmonics and has enormous potential in sub-wavelength photonic circuits and fundamental investigation of single-molecular events. Future challenges and research directions are also discussed.

[1]  Jelena Vučković,et al.  Design of plasmon cavities for solid-state cavity quantum electrodynamics applications , 2007 .

[2]  Zhiyuan Li,et al.  Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces , 2011 .

[3]  N. Lawandy Interactions of charged particles on surfaces , 2009 .

[4]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[5]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[6]  G. Guo,et al.  Bright and Dark Plasmon Modes in Three Nanocylinder Cluster , 2010 .

[7]  George C. Schatz,et al.  Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles , 2008 .

[8]  D. Bergman,et al.  Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? , 2001, Physical review letters.

[9]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[10]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[11]  C. Manolatou,et al.  Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers , 2007, IEEE Journal of Quantum Electronics.

[12]  R. F. Oulton,et al.  Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures , 2011 .

[13]  Pierre Berini,et al.  Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media , 2008 .

[14]  Vadim A. Markel,et al.  Surface plasmons in ordered and disordered chains of metal nanospheres , 2006, 2007 Quantum Electronics and Laser Science Conference.

[15]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[16]  J. Sambles,et al.  Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[18]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[19]  Eric Bourillot,et al.  Direct observation of localized surface plasmon coupling , 1999 .

[20]  Lukas Novotny,et al.  Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams , 1998 .

[21]  S. Kawata,et al.  Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons. , 2009, Optics express.

[22]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[23]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[24]  Cun-Zheng Ning,et al.  Reflection of guided modes in a semiconductor nanowire laser , 2003 .

[25]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[26]  C. Ning,et al.  Peculiar features of confinement factors in a metal-semiconductor waveguide , 2010 .

[27]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[28]  Thomas Szkopek,et al.  Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. , 2007, Optics express.

[29]  M. Stockman,et al.  Spaser action, loss compensation, and stability in plasmonic systems with gain. , 2010, Physical review letters.

[30]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[31]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[32]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[33]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[34]  Richard W Ziolkowski,et al.  The design and simulated performance of a coated nano-particle laser. , 2007, Optics express.

[35]  C. Z. Ning,et al.  Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure , 2009 .

[36]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[37]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[38]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[39]  P. Chu,et al.  Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays , 2009 .

[40]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[41]  S. Bozhevolnyi,et al.  Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths. , 2005, Optics express.

[42]  J. R. Sambles,et al.  Dispersion of surface plasmon polaritons on short-pitch metal gratings , 2002 .

[43]  P. Chu,et al.  Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy , 2006 .

[44]  K. Meerholz,et al.  Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer , 2010 .

[45]  Anatoly V. Zayats,et al.  Ridge-enhanced optical transmission through a continuous metal film , 2004 .

[46]  K. Sakoda,et al.  Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[47]  D. Genov,et al.  Active Plasmonics: Surface Plasmon Interaction With Optical Emitters , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[49]  Paul F. Barbara,et al.  CHARACTERIZATION OF ORGANIC THIN FILM MATERIALS WITH NEAR-FIELD SCANNING OPTICAL MICROSCOPY (NSOM) , 1999 .

[50]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[51]  P. Berini,et al.  Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  D. Sarid,et al.  Optical bistability using prism-coupled, long-range surface plasmons , 1986 .

[53]  S. Kawata,et al.  Towards plasmonic band gap laser , 2004 .

[54]  Chung-Yuan Mou,et al.  Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. , 2009, Nano letters.

[55]  C. Ning,et al.  Far-field emission of a semiconductor nanowire laser. , 2004, Optics letters.

[56]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[57]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[58]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[59]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[60]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons in a microcylinder cavity. , 2011, Physical review letters.

[61]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[62]  Matteo Conforti,et al.  Dispersive properties of linear chains of lossy metal nanoparticles , 2010 .

[63]  Nader Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006 .

[64]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[65]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[66]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[67]  M. Bahoura,et al.  The effect of gain and absorption on surface plasmons in metal nanoparticles , 2007 .

[68]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[69]  Federico Capasso,et al.  Surface emitting terahertz quantum cascade laser with a double-metal waveguide. , 2006, Optics express.

[70]  A. De Luca,et al.  Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. , 2011, ACS nano.

[71]  Vladimir M. Shalaev,et al.  Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate , 2006, Physical review B.

[72]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[73]  R. Shore,et al.  Travelling electromagnetic waves on linear periodic arrays of lossless spheres , 2005 .

[74]  M. Premaratne,et al.  Complex-ωapproach versus complex-kapproach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres , 2011 .

[75]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[76]  P. Guyot-Sionnest,et al.  Excitation of dark plasmons in metal nanoparticles by a localized emitter. , 2009, Physical review letters.

[77]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[78]  William L. Barnes,et al.  Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode? , 2006 .

[79]  Arakawa,et al.  Coupled surface plasmons in periodically corrugated thin silver films. , 1985, Physical review. B, Condensed matter.

[80]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[81]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[82]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[83]  Silver nanocrystal superlattices : Self-assembly and optical emission , 2006 .

[84]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[85]  Andrew G. Glen,et al.  APPL , 2001 .

[86]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[87]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[88]  David S. Citrin,et al.  Coherent excitation transport in metal-nanoparticle chains , 2004 .

[89]  C. Ning,et al.  Modal gain in a semiconductor nanowire laser with anisotropic bandstructure , 2004, IEEE Journal of Quantum Electronics.

[90]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[91]  N. M. Lawandy,et al.  Localized surface plasmon singularities in amplifying media , 2004 .

[92]  J. R. Sambles,et al.  Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces , 2004 .

[93]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[94]  Pierre Berini,et al.  Modeling surface plasmon-polariton gain in planar metallic structures. , 2009, Optics express.

[95]  George C. Schatz,et al.  Metal nanoparticle array waveguides: Proposed structures for subwavelength devices , 2006 .

[96]  Philippe Lalanne,et al.  Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence , 2009 .

[97]  A. Polman,et al.  Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains , 2005, cond-mat/0512187.

[98]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[99]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[100]  W H Weber,et al.  Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. , 1979, Optics letters.

[101]  Kunio Nakajima,et al.  Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and AFM , 1995 .

[102]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[103]  Gupta,et al.  Surface plasmons in two-sided corrugated thin films. , 1987, Physical review. B, Condensed matter.

[104]  S. Kawata,et al.  Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach , 2008 .

[105]  Xiang Zhang,et al.  Spotlight on Plasmon Lasers , 2011, Science.

[106]  Anatoly V Zayats,et al.  Silicon-based plasmonic waveguides. , 2010, Optics express.

[107]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[108]  C. G. Biris,et al.  Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing , 2011, Nanotechnology.

[109]  L. Andrew Lyon,et al.  Unidirectional Plasmon Propagation in Metallic Nanowires , 2000 .

[110]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[111]  James J. Burke,et al.  Nonlinear optics of long range surface plasmons , 1982 .

[112]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[113]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[114]  S A Tretyakov,et al.  Resonator mode in chains of silver spheres and its possible application. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[116]  F. Capasso,et al.  Quantum cascade lasers with double metal-semiconductor waveguide resonators , 2002 .