Modelling Techniques for Simulating Large QCA Circuits

In the past several years, incredible advances in the availability of nano fabrication processes have been witnessed, and have demonstrated molecular-scale production beyond the usable limit for CMOS process technology. This has led to the research and early development of a wide-range of novel computing paradigms at the nanoscale; amongst them, quantum dot cellular automata (QCA). QCA is a nanoelectronic computing paradigm in which an array of cells, each electrostatically interacting with its neighbors, is employed in a locally interconnected manner to implement general purpose digital circuits. Several proof-of-concept QCA devices have been fabricated using silicon-on-insulator (SOI), metallic island devices operating in the Coulomb blockade regime, and nano-magnetics. In recent years, research into implementing these devices using single molecules has also begun to generate significant interest, and most recently, it was demonstrated that silicon atom dangling bonds (DBs), on an otherwise hydrogen terminated silicon crystal surface, can serve as quantum dots.

[1]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[2]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[3]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[4]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[5]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[6]  C. Lent,et al.  Demonstration of a functional quantum-dot cellular automata cell , 1998 .

[7]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[8]  M. Forshaw,et al.  Physical constraints on magnetic quantum cellular automata , 2003 .

[9]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[10]  C. Lent,et al.  Clocked quantum-dot cellular automata shift register , 2003 .

[11]  Lent,et al.  Theoretical study of molecular quantum dot cellular automata , 2004 .

[12]  A. Ivanov,et al.  Quantum Mechanical Simulation of QCA with a Reduced Hamiltonian Model , 2008, 2008 8th IEEE Conference on Nanotechnology.

[13]  Z. Li,et al.  Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. , 2003, Inorganic chemistry.

[14]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[15]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[16]  Graham A. Jullien,et al.  Simple 4-bit processor based on quantum-dot cellular automata (QCA) , 2005, 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP'05).

[17]  Giuseppe Iannaccone,et al.  A QCA cell in silicon-on-insulator technology: theory and experiment , 2003 .

[18]  J. Mutus,et al.  Controlled coupling and occupation of silicon atomic quantum dots at room temperature. , 2008, Physical review letters.

[19]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[20]  Graham A. Jullien,et al.  Impurity charging in semiconductor quantum-dot cellular automata , 2005 .

[21]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[22]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .

[23]  Craig S. Lent,et al.  Role of correlation in the operation of quantum-dot cellular automata , 2001 .

[24]  U. Weiss Quantum Dissipative Systems , 1993 .

[25]  O. Schmidt,et al.  Self-assembled quantum dots with tunable thickness of the wetting layer: Role of vertical confinement on interlevel spacing , 2009 .

[26]  U. Keyser,et al.  Fabrication of Quantum Dots with Scanning Probe Nanolithography , 2001 .

[27]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[28]  Andre Ivanov,et al.  Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits , 2010 .

[29]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[30]  Andre Ivanov,et al.  Architecture for an external input into a molecular QCA circuit , 2009 .

[31]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[32]  C. Lent,et al.  Quantum‐Dot Cellular Automata at a Molecular Scale , 2002 .

[33]  Zengxiao Jin,et al.  Fabrication and Measurement of Molecular Quantum Cellular Automata (QCA) Device , 2006 .

[34]  Z. Li,et al.  Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. , 2003, Inorganic chemistry.

[35]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[36]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[37]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[38]  Wolfgang Porod,et al.  Quantum-Dot Cellular Automata: Line and Majority Logic Gate , 1999 .

[39]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[40]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[41]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[42]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[43]  S. Bhanja,et al.  Estimation of Upper Bound of Power Dissipation in QCA Circuits , 2009, IEEE Transactions on Nanotechnology.

[44]  Wolfgang Porod,et al.  Simulation of Field Coupled Computing Architectures Based on Magnetic Dot Arrays , 2002 .

[45]  Rainer Wawer,et al.  Quantum Networks: Dynamics of Open Nanostructures , 1998, VLSI Design.