Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments

[1]  Nicola Fohrer,et al.  Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions , 2019, Ecological Engineering.

[2]  Sami Domisch,et al.  Projected effects of Climate‐change‐induced flow alterations on stream macroinvertebrate abundances , 2018, Ecology and evolution.

[3]  M. Clark,et al.  Towards simplification of hydrologic modeling: identification of dominant processes , 2016 .

[4]  H. Gupta,et al.  Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change , 2016 .

[5]  Martin Volk,et al.  On characterizing the temporal dominance patterns of model parameters and processes , 2016 .

[6]  Martyn P. Clark,et al.  Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin , 2016 .

[7]  Berit Arheimer,et al.  Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe , 2016 .

[8]  Martyn P. Clark,et al.  HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models , 2015 .

[9]  Dominik E. Reusser,et al.  Process verification of a hydrological model using a temporal parameter sensitivity analysis , 2015 .

[10]  Nicola Fohrer,et al.  Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis , 2015 .

[11]  Ophélie Fovet,et al.  Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models , 2015 .

[12]  Martyn P. Clark,et al.  Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits‐of‐acceptability framework for 24 UK catchments , 2014 .

[13]  N. Fohrer,et al.  A multi‐storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments , 2014 .

[14]  R. Woods,et al.  Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales , 2014 .

[15]  N. Fohrer,et al.  Smart low flow signature metrics for an improved overall performance evaluation of hydrological models , 2014 .

[16]  B. Minsker,et al.  Patterns of regional hydroclimatic shifts: An analysis of changing hydrologic regimes , 2014 .

[17]  N. Fohrer,et al.  How to improve the representation of hydrological processes in SWAT for a lowland catchment – temporal analysis of parameter sensitivity and model performance , 2014 .

[18]  Thorsten Wagener,et al.  A new approach to visualizing time-varying sensitivity indices for environmental model diagnostics across evaluation time-scales , 2014, Environ. Model. Softw..

[19]  Patrick M. Reed,et al.  From maps to movies: High-resolution time-varying sensitivity analysis for spatially distributed watershed models , 2013 .

[20]  Dmitri Kavetski,et al.  The influence of conceptual model structure on model performance: a comparative study for 237 French catchments , 2013 .

[21]  Hoshin Vijai Gupta,et al.  Large-sample hydrology: a need to balance depth with breadth , 2013 .

[22]  J. McDonnell,et al.  A decade of Predictions in Ungauged Basins (PUB)—a review , 2013 .

[23]  Patrick M. Reed,et al.  Time‐varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior , 2013 .

[24]  Hubert H. G. Savenije,et al.  A framework to assess the realism of model structures using hydrological signatures , 2012 .

[25]  M. Sivapalan,et al.  Exploring the physical controls of regional patterns of flow duration curves - Part 3: A catchment classification system based on regime curve indicators , 2012 .

[26]  Relating climate change signals and physiographic catchment properties to clustered hydrological response types , 2012 .

[27]  Doerthe Tetzlaff,et al.  A comparison of similarity indices for catchment classification using a cross-regional dataset , 2012 .

[28]  M. Sivapalan,et al.  Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient , 2011 .

[29]  Dmitri Kavetski,et al.  Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development , 2011 .

[30]  M. Sivapalan,et al.  Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA , 2011 .

[31]  Erwin Zehe,et al.  Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test , 2011 .

[32]  Marc Stieglitz,et al.  Hydrologic similarity among catchments under variable flow conditions , 2010 .

[33]  P. Reed,et al.  Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models , 2009 .

[34]  M. Sivapalan,et al.  Framework for exploration of climatic and landscape controls on catchment water balance, with emphasis on inter-annual variability , 2009 .

[35]  Patrick M. Reed,et al.  A top-down framework for watershed model evaluation and selection under uncertainty , 2009, Environ. Model. Softw..

[36]  Martyn P. Clark,et al.  Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models , 2008 .

[37]  Erwin Zehe,et al.  Analysing the temporal dynamics of model performance for hydrological models , 2008 .

[38]  Hoshin Vijai Gupta,et al.  A process‐based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model , 2008 .

[39]  Florian Pappenberger,et al.  Multi‐method global sensitivity analysis (MMGSA) for modelling floodplain hydrological processes , 2008 .

[40]  P. Reed,et al.  Characterization of watershed model behavior across a hydroclimatic gradient , 2008 .

[41]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[42]  R. Woods,et al.  Catchment Classification and Hydrologic Similarity , 2006, Geography Compass.

[43]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[44]  S. Uhlenbrook,et al.  Sensitivity analyses of a distributed catchment model to verify the model structure , 2005 .

[45]  Soroosh Sorooshian,et al.  Application of temporal streamflow descriptors in hydrologic model parameter estimation , 2005 .

[46]  Günter Blöschl,et al.  Regionalisation of catchment model parameters , 2004 .

[47]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[48]  M. Sivapalan,et al.  Climate and landscape controls on water balance model complexity over changing timescales , 2002 .

[49]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[50]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[51]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[52]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .