Multiple eigenvalues in structural optimization problems

This paper discusses characteristic features and inherent difficulties pertaining to the lack of usual differentiability properties in problems of sensitivity analysis and optimum structural design with respect to multiple eigenvalues. Computational aspects are illustrated via a number of examples.Based on a mathematical perturbation technique, a general multiparameter framework is developed for computation of design sensitivities of simple as well as multiple eigenvalues of complex structures. The method is exemplified by computation of changes of simple and multiple natural transverse vibration frequencies subject to changes of different design parameters of finite element modelled, stiffener reinforced thin elastic plates.Problems of optimization are formulated as the maximization of the smallest (simple or multiple) eigenvalue subject to a global constraint of e.g. given total volume of material of the structure, and necessary optimality conditions are derived for an arbitrary degree of multiplicity of the smallest eigenvalue. The necessary optimality conditions express (i) linear dependence of a set of generalized gradient vectors of the multiple eigenvalue and the gradient vector of the constraint, and (ii) positive semi-definiteness of a matrix of the coefficients of the linear combination.It is shown in the paper that the optimality condition (i) can be directly applied for the development of an efficient, iterative numerical method for the optimization of structural eigenvalues of arbitrary multiplicity, and that the satisfaction of the necessary optimality condition (ii) can be readily checked when the method has converged. Application of the method is illustrated by simple, multiparameter examples of optimizing single and bimodal buckling loads of columns on elastic foundations.

[1]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[2]  Bohuslav Stoces,et al.  Introduction to mining , 1954 .

[3]  J. Keller,et al.  Strongest Columns and Isoperimetric Inequalities for Eigenvalues , 1962 .

[4]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[7]  N. Olhoff,et al.  On single and bimodal optimum buckling loads of clamped columns , 1977 .

[8]  William Prager,et al.  A note on optimal design of columns , 1979 .

[9]  Zenon Mróz,et al.  Non-stationary optimality conditions in structural design☆ , 1979 .

[10]  Zenon Mróz,et al.  Singular Solutions in Structural Optimization Problems , 1980 .

[11]  Edward J. Haug,et al.  Design Sensitivity Analysis in Structural Mechanics.II. Eigenvalue Variations , 1980 .

[12]  Optimization of Structures with Repeated Eigenvalues , 1981 .

[13]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[14]  Kyung K. Choi,et al.  A Numerical Method for Distributed Parameter Structural Optimization Problems with Repeated Eigenvalues , 1982 .

[15]  Alexander S. Bratus,et al.  Bimodal solutions in eigenvalue optimization problems , 1983 .

[16]  Niels Olhoff,et al.  On Structural Optimization , 1983 .

[17]  Raymond H. Plaut,et al.  Bimodal optimization of vibrating shallow arches , 1983 .

[18]  M. Bendsøe,et al.  A Variational Formulation for Multicriteria Structural Optimization , 1983 .

[19]  A solution of a problem of Lagrange , 1983 .

[20]  Martin P. Bendsøe,et al.  An interpretation for min-max structural design problems including a method for relaxing constraints , 1984 .

[21]  E. F. Masur Optimal structural design under multiple eigenvalue constraints , 1984 .

[22]  Nondifferentiable Optimization Problems for Elliptic Systems , 1985 .

[23]  E. F. Masur Some additional comments on optimal structural design under multiple eigenvalue constraints , 1985 .

[24]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[25]  Cheng Gengdong,et al.  Second-order sensitivity analysis of multimodal eigenvalues and related optimization techniques , 1986 .

[26]  Raymond H. Plaut,et al.  Bimodal Optimization of Compressed Columns on Elastic Foundations , 1986 .

[27]  A. Seiranyan Multiple eigenvalues in optimization problems , 1987 .

[28]  Michal Zyczkowski,et al.  Optimal Structural Design under Stability Constraints , 1988 .

[29]  M. Overton On minimizing the maximum eigenvalue of a symmetric matrix , 1988 .

[30]  Michał Życzkowski Structural optimization under stability and vibration constraints , 1989 .

[31]  Raphael T. Haftka,et al.  Accuracy Analysis of the Semi-Analytical Method for Shape Sensitivity Calculation∗ , 1990 .

[32]  Steven J. Cox,et al.  The shape of the ideal column , 1992 .

[33]  W. S. Anglin Mathematics and history , 1992 .

[34]  M. Overton,et al.  On the optimal design of columns against buckling , 1992 .

[35]  Erik Lund,et al.  A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses* , 1993 .

[36]  Erik Lund,et al.  Reliable and Efficient Finite Element Based Design Sensitivity Analysis of Eigenvalues , 1993 .

[37]  N. Olhoff,et al.  Shape design sensitivity analysis of eigenvalues using “exact” numerical differentiation of finite element matrices , 1994 .