Stepwise increased spatial provenance contrast on the Chinese Loess Plateau over late Miocene-Pleistocene

[1]  T. Herbert,et al.  Tectonic degassing drove global temperature trends since 20 Ma , 2022, Science.

[2]  A. Leier,et al.  A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America , 2022, Nature Communications.

[3]  A. Leier,et al.  Detrital zircon provenance and transport pathways of Pleistocene-Holocene eolian sediment in the Pampean Plains, Argentina , 2022, GSA Bulletin.

[4]  J. Schaefer,et al.  Quantifying Late Pleistocene to Holocene Erosion Rates in the Hami Basin, China: Insights Into Pleistocene Dust Dynamics of an East Asian Stony Desert , 2022, Geophysical Research Letters.

[5]  E. al.,et al.  Supplemental Material: Significance of U-Pb detrital zircon geochronology for mudstone provenance , 2022, Geology.

[6]  B. Windley,et al.  Coupling between uplift of the Central Asian Orogenic Belt-NE Tibetan Plateau and accumulation of aeolian Red Clay in the inner Asia began at ~7 Ma , 2022, Earth-Science Reviews.

[7]  P. O’Sullivan,et al.  Blowing in the late Cenozoic wind—detrital zircon river contributions to an interior Alaska loess deposit , 2022, Quaternary Science Reviews.

[8]  XiangJun Liu,et al.  Spatially variable provenance of the Chinese Loess Plateau , 2021, Geology.

[9]  T. Herbert,et al.  Poleward and weakened westerlies during Pliocene warmth , 2021, Nature.

[10]  G. Gehrels,et al.  Rapid U‐Pb Geochronology by Laser Ablation Multi‐Collector ICP‐MS , 2020, Geostandards and Geoanalytical Research.

[11]  M. Caffee,et al.  Late Cenozoic climate change paces landscape adjustments to Yukon River capture , 2020, Nature Geoscience.

[12]  G. O’Sullivan,et al.  Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis , 2020 .

[13]  Fahu Chen,et al.  Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP , 2020, Nature Communications.

[14]  Walter H. F. Smith,et al.  The Generic Mapping Tools Version 6 , 2019, Geochemistry, Geophysics, Geosystems.

[15]  P. Wessel,et al.  Global Bathymetry and Topography at 15 Arc Sec: SRTM15+ , 2019, Earth and Space Science.

[16]  Huayu Lu,et al.  Formation and evolution of Gobi Desert in central and eastern Asia , 2019, Earth-Science Reviews.

[17]  Huijun Jin,et al.  The extent of permafrost during the Last Permafrost Maximum (LPM) on the Ordos Plateau, north China , 2019, Quaternary Science Reviews.

[18]  J. Saylor,et al.  Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau , 2019, GSA Bulletin.

[19]  G. Ghoshal,et al.  Use and abuse of detrital zircon U-Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela , 2018, Geology.

[20]  M. Wingate,et al.  Uplift of the Lüliang Mountains at ca. 5.7 Ma: Insights from provenance of the Neogene eolian red clay of the eastern Chinese Loess Plateau , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[21]  A. C. Robinson,et al.  Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers , 2018, Gondwana Research.

[22]  C. Garzione,et al.  Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates , 2018, Science Advances.

[23]  P. Vermeesch,et al.  Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess , 2017, Quaternary Research.

[24]  J. Saylor,et al.  Unmixing detrital geochronology age distributions , 2017 .

[25]  Huayu Lu,et al.  Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U‐Pb age patterns , 2016 .

[26]  G. Dupont‐Nivet,et al.  Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance , 2016, Nature Communications.

[27]  Alexis Licht,et al.  Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau , 2016 .

[28]  A. Kaakinen,et al.  Variations in the provenance of the late Neogene Red Clay deposits in northern China , 2016 .

[29]  Yiping Zhang,et al.  Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai‐Tibetan Plateau , 2016 .

[30]  Pieter Vermeesch,et al.  Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment , 2015, Nature Communications.

[31]  Pieter Vermeesch,et al.  Quaternary dust source variation across the Chinese Loess Plateau , 2015 .

[32]  G. Gehrels,et al.  What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations , 2014 .

[33]  X. Fang,et al.  Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes , 2014, Quaternary Research.

[34]  Jan-Berend W Stuut,et al.  Mineral Dust: A Key Player in the Earth System , 2014 .

[35]  Pieter Vermeesch,et al.  Multi-sample comparison of detrital age distributions (vol 191, pg 209, 2002) , 2014 .

[36]  D. Stockli,et al.  Provenance of the upper Miocene-Pliocene Red Clay deposits of the Chinese loess plateau , 2013 .

[37]  Gaojun Li,et al.  Binary sources of loess on the Chinese Loess Plateau revealed by U–Pb ages of zircon , 2013, Quaternary Research.

[38]  Pieter Vermeesch,et al.  Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau , 2013 .

[39]  P. Vermeesch Multi-sample comparison of detrital age distributions , 2013 .

[40]  Shuzhen Peng,et al.  Spatial and glacial‐interglacial variations in provenance of the Chinese Loess Plateau , 2012 .

[41]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[42]  Lin Ding,et al.  Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications , 2011 .

[43]  R. Amit The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene , 2011 .

[44]  Guochun Zhao,et al.  U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton , 2011 .

[45]  Peizhen Zhang,et al.  Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau) , 2010 .

[46]  G. Gehrels,et al.  Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China , 2009, American Journal of Science.

[47]  San-zhong Li,et al.  SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen , 2008 .

[48]  Jie Li,et al.  Palynological evidence for Late Miocene–Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change , 2006 .

[49]  P. Clift,et al.  Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean , 2006 .

[50]  S. Clemens,et al.  Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau , 2006 .

[51]  Jimin Sun,et al.  Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution , 2005 .

[52]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[53]  Guangjian Wu,et al.  A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in northwest China , 2003 .

[54]  R. Korsch,et al.  The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards , 2003 .

[55]  Shuzhen Peng,et al.  Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China , 2002, Nature.

[56]  A. Lin,et al.  How and when did the Yellow River develop its square bend , 2001 .

[57]  J. Kutzbach,et al.  Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times , 2001, Nature.

[58]  C. Powell,et al.  Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet , 2001 .

[59]  Peizhen Zhang,et al.  Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates , 2001, Nature.

[60]  G. Haug,et al.  Onset of permanent stratification in the subarctic Pacific Ocean , 1999, Nature.

[61]  N. Lancaster,et al.  Aeolian system sediment state: theory and Mojave Desert Kelso dune field example , 1999 .

[62]  N. Kuiper Tests concerning random points on a circle , 1960 .