Monocular transcorneal electrical stimulation induces ciliary muscle thickening in contralateral eye.

[1]  A. Stett,et al.  Transcorneal Electrical Stimulation Dose-Dependently Slows the Visual Field Loss in Retinitis Pigmentosa , 2023, Translational vision science & technology.

[2]  Y. Chan,et al.  Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models , 2022, Annals of the New York Academy of Sciences.

[3]  D. Atchison,et al.  Multifocal contact lens design, not addition power, affects accommodation responses in young adult myopes , 2021, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[4]  L. Lim,et al.  Neuroprotective Effects and Therapeutic Potential of Transcorneal Electrical Stimulation for Depression , 2021, Cells.

[5]  L. Chan,et al.  Excitation of the Pre-frontal and Primary Visual Cortex in Response to Transcorneal Electrical Stimulation in Retinal Degeneration Mice , 2020, Frontiers in Neuroscience.

[6]  D. Inman,et al.  Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma , 2020, Annals of biomedical engineering.

[7]  Torsten Straßer,et al.  Review of the application of the open-source software CilOCT for semi-automatic segmentation and analysis of the ciliary muscle in OCT images , 2020, PloS one.

[8]  F. Schaeffel,et al.  Changing accommodation behaviour during multifocal soft contact lens wear using auditory biofeedback training , 2020, Scientific Reports.

[9]  Min Zhao,et al.  Biomedical applications of electrical stimulation , 2020, Cellular and Molecular Life Sciences.

[10]  F. Schaeffel,et al.  Prolonged nearwork affects the ciliary muscle morphology. , 2019, Experimental eye research.

[11]  Sandra Wagner,et al.  Erratum: Ciliary muscle thickness profiles derived from optical coherence tomography images: erratum. , 2018, Biomedical optics express.

[12]  C. Braun,et al.  Phosphene perception and pupillary responses to sinusoidal electrostimulation ‐ For an objective measurement of retinal function , 2018, Experimental eye research.

[13]  Sandra Wagner,et al.  Ciliary muscle thickness profiles derived from optical coherence tomography images. , 2018, Biomedical optics express.

[14]  L. Nino-de-Rivera,et al.  Transpalpebral Electrical Stimulation as a Novel Therapeutic Approach to Decrease Intraocular Pressure for Open-Angle Glaucoma: A Pilot Study , 2018, Journal of ophthalmology.

[15]  Gislin Dagnelie,et al.  Randomized controlled trial of electro‐stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa , 2018, Acta ophthalmologica.

[16]  B. Wilhelm,et al.  Transkorneale Elektrostimulation bei primärem Offenwinkelglaukom , 2017, Der Ophthalmologe.

[17]  Marcella Q. Salomão,et al.  Ciliary Muscle Electrostimulation to Restore Accommodation in Patients With Early Presbyopia: Preliminary Results. , 2017, Journal of refractive surgery.

[18]  B. Wilhelm,et al.  Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds , 2017, Acta ophthalmologica.

[19]  A. Kay How Cells Can Control Their Size by Pumping Ions , 2017, Front. Cell Dev. Biol..

[20]  D. Troilo,et al.  Accommodation and Phoria in Children Wearing Multifocal Contact Lenses. , 2017, Optometry and vision science : official publication of the American Academy of Optometry.

[21]  Kin-Sang Cho,et al.  Electrical Stimulation as a Means for Improving Vision. , 2016, The American journal of pathology.

[22]  E. Zrenner,et al.  Transcorneal Electrical Stimulation (TES) results in a slowing of Visual Field (VF) progressive deterioration in Retinitis Pigmentosa (RP) patients , 2015 .

[23]  P. Rossini,et al.  Nanotechnology and Regenerative Medicine Retinal Origin of Electrically Evoked Potentials in Response to Transcorneal Alternating Current Stimulation in the Rat , 2015 .

[24]  Guoxu Xu,et al.  Influence of the Hypothalamic Arcuate Nucleus on Intraocular Pressure and the Role of Opioid Peptides , 2014, PloS one.

[25]  James D. Weiland,et al.  Modeling and percept of transcorneal electrical stimulation in humans , 2011, IEEE Transactions on Biomedical Engineering.

[26]  Eberhart Zrenner,et al.  Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. , 2011, Investigative ophthalmology & visual science.

[27]  Masashi Takata,et al.  Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects , 2010, Clinical ophthalmology.

[28]  R. Lee,et al.  Aqueous Humor Dynamics: A Review , 2010, The open ophthalmology journal.

[29]  Xiaofen Mo,et al.  Transcorneal Electrical Stimulation Induce the Proliferation of Progenitor-Like Cells in the Ciliary Body of Adult SD Rats , 2010 .

[30]  T. Fujikado,et al.  Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats. , 2010, Experimental eye research.

[31]  Hai-dong Xu,et al.  Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration , 2009, Experimental Neurology.

[32]  Takashi Fujikado,et al.  Direct Effect of Electrical Stimulation on Induction of Brain-derived Neurotrophic Factor from Cultured Retinal Müller Cells Materials and Methods Müller Cell Cultures , 2022 .

[33]  Y. Hata,et al.  Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. , 2007, Investigative ophthalmology & visual science.

[34]  Eberhart Zrenner,et al.  Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. , 2006, Investigative ophthalmology & visual science.

[35]  Takashi Fujikado,et al.  Effect of Transcorneal Electrical Stimulation in Patients with Nonarteritic Ischemic Optic Neuropathy or Traumatic Optic Neuropathy , 2006, Japanese Journal of Ophthalmology.

[36]  A. Glasser Accommodation: mechanism and measurement. , 2006, Ophthalmology clinics of North America.

[37]  Y. Fukuda,et al.  Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. , 2005, Investigative ophthalmology & visual science.

[38]  H. Bolay,et al.  Transcorneal stimulation of trigeminal nerve afferents to increase cerebral blood flow in rats with cerebral vasospasm: a noninvasive method to activate the trigeminovascular reflex. , 2002, Journal of neurosurgery.

[39]  Okovitov Vv Transconjunctival electrostimulation of eye in pathogenetic therapy of progressive myopia , 1997 .

[40]  A. Reibaldi,et al.  Receptor‐responses in fresh human ciliary muscle , 1986, British journal of pharmacology.

[41]  R. Suzuki,et al.  Neuronal influence on the mechanical activity of the ciliary muscle , 1983, British journal of pharmacology.

[42]  G. Trick,et al.  Improved electrode for electroretinography. , 1979, Investigative ophthalmology & visual science.

[43]  H. Goldmann Flow of aqueous humor in humans. , 1947 .

[44]  H. Helmholtz,et al.  Ueber die Accommodation des Auges , 1855, Archiv für Ophthalmologie.

[45]  Eberhart Zrenner,et al.  Transcorneal Electrical Stimulation for Patients With Retinitis Pigmentosa: A Prospective, Randomized, Sham-Controlled Follow-up Study Over 1 Year. , 2017, Investigative ophthalmology & visual science.

[46]  Zhuojing Luo,et al.  Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons , 2013, Neurochemical Research.

[47]  C. Herrmann,et al.  Non-invasive alternating current stimulation improves vision in optic neuropathy. , 2011, Restorative neurology and neuroscience.

[48]  A. P. Nesterov,et al.  [Effect of ciliary muscle electrical stimulation on ocular hydrodynamics and visual function in patients with glaucoma]. , 1997, Vestnik oftalmologii.