Facile synthesis of Ge–MWCNT nanocomposite electrodes for high capacity lithium ion batteries

Germanium (Ge) nanocrystals combined with multiwalled carbon nanotube (Ge–MWCNT) composites were synthesized via a solvothermal approach and characterized through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning and transmission electron microscopy (SEM and TEM). The electrochemical behaviour during lithium insertion and de-insertion was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge measurements. The as prepared Ge–MWCNT nanocomposite exhibits improved cycling performance with higher capacity retention than pristine Ge. The Ge–MWCNTs exhibit a discharge capacity of ∼1160 mA h g−1 after 60 cycles at a current rate of 0.1C. Furthermore, they showed an excellent rate performance at a current rate of 5C (where 1C is 1600 mA g−1) by delivering a specific capacity of ∼406 mA h g−1 over 400 charge–discharge cycles.

[1]  K. Johnston,et al.  High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution , 2005 .

[2]  B. Landi,et al.  Advanced germanium nanoparticle composite anodes using single wall carbon nanotube conductive additives , 2014 .

[3]  Yan Yu,et al.  Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. , 2014, Nanoscale.

[4]  F. Angelis,et al.  Next-generation textiles: from embedded supercapacitors to lithium ion batteries , 2016 .

[5]  Xiaogang Zhang,et al.  Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries , 2015 .

[6]  Ruoxu Lin,et al.  Nickel Nanocone‐Array Supported Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[7]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[8]  Fanghong Xue,et al.  Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode , 2014 .

[9]  Bingan Lu,et al.  Elastic Reduced Graphene Oxide Nanosheets Embedded in Germanium Nanofiber Matrix as Anode Material for High-Performance Li-Ion Battery , 2015 .

[10]  G. Cui,et al.  A Germanium–Carbon Nanocomposite Material for Lithium Batteries , 2008 .

[11]  Cheol‐Min Park,et al.  Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries , 2008 .

[12]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[13]  Yong Zhang,et al.  Novel silicon nanoparticles with nitrogen-doped carbon shell dispersed in nitrogen-doped graphene and CNTs hybrid electrode for lithium ion battery , 2017 .

[14]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[15]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[16]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[17]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[18]  Oliver G. Schmidt,et al.  Strain‐Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High‐Capacity and Very Long‐Life Anodes for Lithium‐Ion Batteries , 2013 .

[19]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[20]  Yong Huang,et al.  Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer , 2016 .

[21]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[22]  K. Amine,et al.  Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries. , 2015, Nano letters.

[23]  Karena W. Chapman,et al.  Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries , 2015 .

[24]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[25]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[26]  B. Landi,et al.  High energy density lithium-ion batteries with carbon nanotube anodes , 2010 .

[27]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[28]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[29]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[30]  J. Holmes,et al.  Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100). , 2014, Langmuir : the ACS journal of surfaces and colloids.

[31]  D. Wexler,et al.  In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries , 2013 .

[32]  Yu‐Guo Guo,et al.  Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. , 2012, Journal of the American Chemical Society.

[33]  Dong‐Wan Kim,et al.  A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries. , 2012, Chemical communications.

[34]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[35]  L. Manna,et al.  Germanium Nanocrystals-MWCNTs Composites as Anode Materials for Lithium Ion Batteries , 2014 .

[36]  D. Shi,et al.  A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries , 2013 .

[37]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[38]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[39]  Zhongtao Li,et al.  Firmly combination of CoMnOx nanocrystals supported on N-doped CNT for lithium-ion batteries , 2016 .

[40]  H. Le,et al.  Carbon‐Interconnected Ge Nanocrystals as an Anode with Ultra‐Long‐Term Cyclability for Lithium Ion Batteries , 2014 .

[41]  Guo Hong,et al.  Germanium–graphene composite anode for high-energy lithium batteries with long cycle life , 2013 .

[42]  Sarah L. Frisco,et al.  Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries , 2011 .

[43]  P. Bradford,et al.  Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries , 2014 .

[44]  Jia-ling Wang,et al.  A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries , 2014 .

[45]  Xiaogang Zhang,et al.  Confined germanium nanoparticles in an N-doped carbon matrix for high-rate and ultralong-life lithium ion batteries , 2015 .

[46]  Yan Yu,et al.  Three‐Dimensional (3D) Bicontinuous Au/Amorphous‐Ge Thin Films as Fast and High‐Capacity Anodes for Lithium‐Ion Batteries , 2013 .

[47]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[48]  Prashanth H. Jampani,et al.  Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system. , 2015, Nanoscale.

[49]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .