A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR

Abstract In this paper we quantify the effects of temporal decorrelation in repeat pass synthetic aperture radar interferometry (InSAR). Temporal decorrelation causes significant uncertainties in vegetation parameter estimates obtained using various InSAR techniques, which are desired on a global scale. Because of its stochastic nature temporal decorrelation is hard to model and isolate. In this paper we analyze temporal decorrelation statistically as observed in a large swath of SIR-C L-Band InSAR data collected over the eastern United States, with a repeat pass duration of one day in October 1994 and a near zero perpendicular baseline. The very small baseline for this particular pair makes the effect of volumetric scattering on correlation magnitude statistics nearly imperceptible, allowing for a quantitative analysis of temporal effects alone. The swath analyzed in this paper spans more than a million hectares of terrain comprised primarily of deciduous and evergreen forests, agricultural land, water and urban areas. The relationships of these different land-cover types, phenology and weather conditions (i.e. precipitation and wind) on the measures of interferometric correlation is analyzed in what amounts to be the most geographically extensive analysis of this phenomenon to date.

[1]  Keqi Zhang,et al.  Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data , 2006 .

[2]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2005, IEEE Trans. Geosci. Remote. Sens..

[3]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Robert G. Quayle,et al.  A Historical Perspective of U.S. Climate Divisions , 1996 .

[6]  Christiane Schmullius,et al.  Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval , 2007 .

[7]  S. Cloude Polarization coherence tomography , 2006 .

[8]  Ashley William Gunter,et al.  Getting it for free: Using Google earth™ and IL WIS to map squatter settlements in Johannesburg , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[10]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[11]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[12]  J. Wickham,et al.  Thematic accuracy of the 1992 National Land-Cover Data for the eastern United States: Statistical methodology and regional results , 2003 .

[13]  Shih-tseng Wu,et al.  Potential Application of Multipolarization SAR for Pine-Plantation Biomass Estimation , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Josef Kellndorfer,et al.  Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height , 2007 .

[15]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[16]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[17]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[19]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[21]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[22]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[23]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[25]  Kamal Sarabandi,et al.  SIR-C data quality and calibration results , 1995, IEEE Trans. Geosci. Remote. Sens..

[26]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[27]  J. Vogelmann,et al.  Regional Land Cover Characterization Using Landsat Thematic Mapper Data and Ancillary Data Sources , 1998 .

[28]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[29]  Ishuwa C. Sikaneta,et al.  Estimating the effective number of looks in interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[31]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[32]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[33]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .