A Comparison of Multi-label Feature Selection Methods using the Problem Transformation Approach
暂无分享,去创建一个
Newton Spolaôr | Everton Alvares Cherman | M. C. Monard | Huei Diana Lee | Maria Carolina Monard | H. D. Lee | N. Spolaôr | E. A. Cherman
[1] Grigorios Tsoumakas,et al. An Empirical Study of Lazy Multilabel Classification Algorithms , 2008, SETN.
[2] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[3] อนิรุธ สืบสิงห์,et al. Data Mining Practical Machine Learning Tools and Techniques , 2014 .
[4] Andrea Esuli,et al. Boosting multi-label hierarchical text categorization , 2008, Information Retrieval.
[5] Volker Roth,et al. Kernel methods for regression and classification , 2001 .
[6] Yong Wang,et al. Semi-supervised Multi-label Learning Algorithm Using Dependency Among Labels , 2011 .
[7] Alexander K. Petrenko,et al. Electronic Notes in Theoretical Computer Science , 2009 .
[8] Ian Witten,et al. Data Mining , 2000 .
[9] Víctor Robles,et al. Feature selection for multi-label naive Bayes classification , 2009, Inf. Sci..
[10] Grigorios Tsoumakas,et al. Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.
[11] José Ramón Quevedo,et al. Graphical Feature Selection for Multilabel Classification Tasks , 2011, IDA.
[12] Pabitra Mitra,et al. Multi-label Text Classification Approach for Sentence Level News Emotion Analysis , 2009, PReMI.
[13] Newton Spolaôr,et al. Filter Approach Feature Selection Methods to Support Multi-label Learning Based on ReliefF and Information Gain , 2012, SBIA.
[14] Grigorios Tsoumakas,et al. MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..
[15] Amanda Clare,et al. Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.
[16] Yiqin Wang,et al. Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine , 2013, Science China Information Sciences.
[17] Marcel Worring,et al. The Mediamill Semantic Video Search Engine , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.
[18] Newton Spolaôr,et al. ReliefF for Multi-label Feature Selection , 2013, 2013 Brazilian Conference on Intelligent Systems.
[19] Jiebo Luo,et al. Learning multi-label scene classification , 2004, Pattern Recognit..
[20] M. C. Monard,et al. A systematic review to identify feature selection publications in multi-labeled data , 2012 .
[21] Everton Alvares Cherman,et al. Incorporating label dependency into the binary relevance framework for multi-label classification , 2012, Expert Syst. Appl..
[22] Huan Liu,et al. Advancing Feature Selection Research − ASU Feature Selection Repository , 2010 .
[23] Technical N Ote. Algorithms for subsetting attribute values with Relief , 2010 .
[24] Peerapon Vateekul,et al. Irrelevant attributes and imbalanced classes in multi-label text-categorization domains , 2011, Intell. Data Anal..
[25] Jiawei Han,et al. Correlated multi-label feature selection , 2011, CIKM '11.
[26] Qiang Yang,et al. Document Transformation for Multi-label Feature Selection in Text Categorization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[27] Grigorios Tsoumakas,et al. Multi-Label Classification of Music into Emotions , 2008, ISMIR.
[28] Jesse Read,et al. A Pruned Problem Transformation Method for Multi-label Classification , 2008 .
[29] Marko Robnik-Sikonja,et al. Theoretical and Empirical Analysis of ReliefF and RReliefF , 2003, Machine Learning.
[30] Michel Verleysen,et al. Feature Selection for Multi-label Classification Problems , 2011, IWANN.
[31] Hiroshi Motoda,et al. Computational Methods of Feature Selection , 2022 .
[32] Dominik Slezak,et al. Attribute Reduction in the Bayesian Version of Variable Precision Rough Set Model , 2003, RSKD.
[33] Huan Liu,et al. Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.