Fractional Brownian Vector Fields

This work puts forward an extended definition of vector fractional Brownian motion (fBm) using a distribution theoretic formulation in the spirit of Gel′fand and Vilenkin's stochastic analysis. We introduce random vector fields that share the statistical invariances of standard vector fBm (self-similarity and rotation invariance) but which, in contrast, have dependent vector components in the general case. These random vector fields result from the transformation of white noise by a special operator whose invariance properties the random field inherits. The said operator combines an inverse fractional Laplacian with a Helmholtz-like decomposition and weighted recombination. Classical fBm's can be obtained by balancing the weights of the Helmholtz components. The introduced random fields exhibit several important properties that are discussed in this paper. In addition, the proposed scheme yields a natural extension of the definition to Hurst exponents greater than one.

[1]  Michael Unser,et al.  Self-similar random vector fields and their wavelet analysis , 2009, Optical Engineering + Applications.

[2]  B. Vedel Confinement of the infrared divergence for the Mumford process , 2006 .

[3]  N. N. Vakhanii︠a︡ Probability distributions on linear spaces , 1981 .

[4]  R. Dobrushin Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .

[5]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[6]  Amiel Feinstein,et al.  Applications of harmonic analysis , 1964 .

[7]  A. Craya Contribution à l'analyse de la turbulence associée à des vitesses moyennes , 1957 .

[8]  Thierry Blu,et al.  Self-Similarity: Part II—Optimal Estimation of Fractal Processes , 2007, IEEE Transactions on Signal Processing.

[9]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..

[10]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[11]  Muthuvel Arigovindan Variational reconstruction of scalar and vector images from non-uniform samples , 2005 .

[12]  J. Kahane Some Random Series of Functions , 1985 .

[13]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[14]  N. Leonenko,et al.  Limit Theorems for Random Fields with Singular Spectrum , 1999 .

[15]  Kai Schneider,et al.  Craya decomposition using compactly supported biorthogonal wavelets , 2010 .

[16]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[17]  T. Hida Harmonic Analysis on the Space of Generalized Functions , 1970 .

[18]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[19]  Xiaolin Wu,et al.  On Rate-Distortion Models for Natural Images and Wavelet Coding Performance , 2007, IEEE Transactions on Image Processing.

[20]  Michael Unser,et al.  Fractal modelling and analysis of flow-field images , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[21]  Marie Farge,et al.  Wavelets and turbulence , 2012, Proc. IEEE.

[22]  Dimitri Van De Ville,et al.  Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes , 2009, IEEE Transactions on Image Processing.

[23]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[24]  J. Viecelli,et al.  Functional representation of power-law random fields and time series , 1991 .

[25]  S. Mallat A wavelet tour of signal processing , 1998 .

[26]  D. Gurarie,et al.  Diffusing passive tracers in random incompressible flows: Statistical topography aspects , 1996 .

[27]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[28]  W. Rudin Principles of mathematical analysis , 1964 .

[29]  Walter Willinger,et al.  Is Network Traffic Self-Similar or Multifractal? , 1997 .

[30]  R. Randles Theory of Probability and Its Applications , 2005 .

[31]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  M. Kelbert,et al.  Fractional random fields associated with stochastic fractional heat equations , 2005, Advances in Applied Probability.

[33]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[35]  Michael Unser,et al.  Stochastic Models for Sparse and Piecewise-Smooth Signals , 2011, IEEE Transactions on Signal Processing.

[36]  Benoit B. Mandelbrot,et al.  Gaussian self-affinity and fractals : globality, the earth, 1/fnoise, and R/S , 2001 .

[37]  Michel Talagrand,et al.  Pettis integral and measure theory , 1984 .

[38]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[39]  Andrew J. Majda,et al.  Simple examples with features of renormalization for turbulent transport , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[40]  Andrew J. Majda,et al.  A Wavelet Monte Carlo Method for Turbulent Diffusion with Many Spatial Scales , 1994 .

[41]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[42]  A. Monin,et al.  Statistical fluid mechanics: Mechanics of turbulence. Volume 2 /revised and enlarged edition/ , 1975 .

[43]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1995, CCRV.

[44]  P. Levy Le mouvement brownien , 1955 .

[45]  Steven A. Orszag,et al.  Numerical Methods for the Simulation of Turbulence , 1969 .

[46]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[47]  V. Perrier,et al.  Submitted to: 2007 Industrial Simulation Conference SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS , 2007 .

[48]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[49]  P. Sagaut,et al.  Homogeneous Turbulence Dynamics , 2008 .

[50]  José M. Angulo,et al.  Fractional Generalized Random Fields of Variable Order , 2004 .

[51]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[52]  Thierry Blu,et al.  Fractional Splines and Wavelets , 2000, SIAM Rev..

[53]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[54]  Thierry Blu,et al.  Self-Similarity: Part I—Splines and Operators , 2007, IEEE Transactions on Signal Processing.