Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB

[1]  S. Yamanaka,et al.  Thermal and Mechanical Properties of α‐MoSi2 as a High‐Temperature Material , 2018 .

[2]  U. P. Verma,et al.  Physical properties of molybdenum monoboride: Ab-initio study , 2018 .

[3]  E. Levashov,et al.  Self-propagating high-temperature synthesis of nanocomposite ceramics TaSi2-SiC with hierarchical structure and superior properties , 2018 .

[4]  F. Akhtar,et al.  In situ fabrication and properties of 0.4MoB-0.1SiC-xMoSi2 composites by self-propagating synthesis and hot-press sintering , 2018 .

[5]  E. Levashov,et al.  Self-propagating high-temperature synthesis of refractory boride ceramics (Zr,Ta)B2 with superior properties , 2017 .

[6]  E. Levashov,et al.  Kinetics and oxidation mechanism of MoSi2–MoB ceramics in the 600–1200 °C temperature range , 2017 .

[7]  E. Levashov,et al.  Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo-Si-B and Mo-Al-Si-B coatings , 2017 .

[8]  E. Shafirovich,et al.  Mechanically activated combustion synthesis of molybdenum borosilicides for ultrahigh-temperature structural applications , 2016 .

[9]  Xiaohong Wang,et al.  Synthesis and Properties of MoSi2–MoB–SiC Ceramics , 2016 .

[10]  E. Levashov,et al.  Structure and properties of nanocomposite Mo—Si—B—(N) coatings , 2015, Protection of Metals and Physical Chemistry of Surfaces.

[11]  E. Levashov,et al.  Features of combustion in the Mo-Si-B system: Part 2. Effect of mechanical activation , 2015, Russian Journal of Non-Ferrous Metals.

[12]  J. Lamon,et al.  Ceramic Matrix Composites: Materials, Modeling and Technology , 2014 .

[13]  E. Levashov,et al.  Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation , 2014 .

[14]  R. Vafaei,et al.  Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering , 2014 .

[15]  V. Gritsenko,et al.  Electronic structure of silicon dioxide (a review) , 2014 .

[16]  R. Orrú,et al.  Synthesis, Sintering, and Oxidative Behavior of HfB2–HfSi2 Ceramics , 2014 .

[17]  E. Shafirovich,et al.  Mechanically activated combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications , 2014 .

[18]  Elisa Sani,et al.  Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications , 2013 .

[19]  Yongcheng Liang,et al.  An unusual variation of stability and hardness in molybdenum borides , 2012 .

[20]  E. Levashov,et al.  SHS in mechanically activated Cr-B and Ti-Cr-B blends: Role of gas-transport reactions , 2012, International Journal of Self-Propagating High-Temperature Synthesis.

[21]  W. S. Wang,et al.  Superplasticity of a multiphase fine-grained Mo–Si–B alloy , 2011 .

[22]  Jozef Petrík,et al.  THE INFLUENCE OF THE LOAD ON THE HARDNESS , 2011 .

[23]  D. Kondepudi,et al.  Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites: Multilayer modeling and control of the microstructure , 2010 .

[24]  Thomas H. Squire,et al.  Material property requirements for analysis and design of UHTC components in hypersonic applications , 2010 .

[25]  Hui Wang,et al.  Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles , 2010 .

[26]  Sylvia M. Johnson,et al.  Recent Developments in Ultra High Temperature Ceramics at NASA Ames , 2009 .

[27]  Antonio Mario Locci,et al.  Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis , 2009 .

[28]  M. Nygren,et al.  Spark plasma sintering of Zr-and Hf-borides with decreasing amounts of MoSi2 as sintering aid , 2008 .

[29]  N. Boudet,et al.  In situ synchrotron investigation of MoSi2 formation mechanisms during current-activated SHS sintering , 2007 .

[30]  C. Yeh,et al.  Preparation of MoB and MoB–MoSi2 composites by combustion synthesis in SHS mode , 2007 .

[31]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[32]  Zi-kui Liu,et al.  Thermodynamic modeling of the Hf–Si–O system , 2006, 0708.4239.

[33]  C. Dietzsch,et al.  Plastic deformation of MoSi2 single crystals along 〈110〉 , 2005 .

[34]  Gang Wang,et al.  The Mechanism of the Formation of MoSi2 by Self-Propagating High-Temperature Synthesis , 2004 .

[35]  Tetsuya Suzuki,et al.  Oxidation resistance of boronized MoSi2 , 2003 .

[36]  C. M. Hoffmann,et al.  The crystal structure and thermal expansion of Mo5SiB2 , 2001 .

[37]  R. N. Wright,et al.  Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .

[38]  K. Sadananda,et al.  Creep and fatigue properties of high temperature silicides and their composites , 1999 .

[39]  C. Czarnik,et al.  Plasticity enhancement mechanisms in MoSi2 , 1999 .

[40]  M. Yamaguchi,et al.  Dislocation processes during the deformation of MoSi2 single crystals in a soft orientation , 1999 .

[41]  E. Opila,et al.  Oxidation and Corrosion of Silicon-Based Ceramics and Composites* , 1997 .

[42]  M. Kaufman,et al.  Synthesis of MoSi2-boride composites through in situ displacement reactions , 1997 .

[43]  Yong-Seog Kim,et al.  On the formation of MoSi2 by self-propagating high-temperature synthesis , 1996 .

[44]  M. Akinc,et al.  Oxidation Behavior of Boron‐Modified Mo5Si3 at 800°–1300°C , 1996 .

[45]  M. Kramer,et al.  Compressive creep behavior of Mo5Si3 with the addition of boron , 1996 .

[46]  J. Bull,et al.  Ultra-High Temperature Ceramics , 1994 .

[47]  B. Lawn,et al.  Making Ceramics "Ductile" , 1994, Science.

[48]  E. Lee,et al.  Oxidation of MoSi2-based composites , 1992 .

[49]  R. M. Aikin Strengthening of discontinuously reinforced MoSi2 composites at high temperatures , 1992 .

[50]  D. P. Mason,et al.  Mechanical behavior and interface design of MoSi2-based alloys and composites , 1992 .

[51]  J. Petrovic,et al.  Hardness and Fracture Toughness of SiC‐Particle‐Reinforced MoSi2 Composites , 1991 .

[52]  I. Wright,et al.  Indentation fracture of WC-Co cermets , 1985 .