Novel Gaussian quantum-behaved particle swarm optimiser applied to electromagnetic design

Design of global optimisation approaches inspired by swarm intelligence is an emergent research area with population and evolution characteristics similar to those of evolutionary algorithms. However, the swarm intelligence concept differs in that it emphasises co-operative behaviour among group members. Particle swarm optimisation (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel quantum-behaved PSO (QPSO) approach using mutation operator with Gaussian probability distribution, called G-QPSO. The simulation results demonstrate good performance of the QPSO and G-QPSO in solving a significant benchmark problem in electromagnetic area, the shape design of Loney's solenoid benchmark problem.

[1]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[2]  Carlo A. Borghi,et al.  Loney's solenoid multi-objective optimization problem , 1999 .

[3]  Fabrizio Giulio Luca Pilo,et al.  A comparison of optimization techniques for Loney's solenoids design: an alternative Tabu Search algorithm , 2000 .

[4]  F. Levin An Introduction to Quantum Theory , 2001 .

[5]  Gabriela Ciuprina,et al.  Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans Mag , 2002 .

[6]  Jacob Barhen,et al.  Solving a class of continuous global optimization problems using quantum algorithms , 2002 .

[7]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[8]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[9]  Lehrstuhl für Elektrische,et al.  Gaussian swarm: a novel particle swarm optimization algorithm , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[10]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[11]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[12]  Christian Magele,et al.  Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design , 2004 .

[13]  Jun Sun,et al.  A global search strategy of quantum-behaved particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[14]  Wenbo Xu,et al.  Adaptive parameter control for quantum-behaved particle swarm optimization on individual level , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[15]  Jing Liu,et al.  Quantum-behaved particle swarm optimization with mutation operator , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[16]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  L. dos Santos Coelho,et al.  Use of Cultural Particle Swarm Optimization for Loney's Solenoids Design , 2006, 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation.

[18]  L. Coelho,et al.  Combining of Differential Evolution and Implicit Filtering Algorithm Applied to Electromagnetic Design Optimization , 2007 .

[19]  Leandro dos Santos Coelho,et al.  Electromagnetic device optimization by hybrid evolution strategy approaches , 2007 .