Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites

Graphical abstract

[1]  M. Barrett,et al.  Human African trypanosomiasis: pharmacological re‐engagement with a neglected disease , 2007, British journal of pharmacology.

[2]  F. Buckner,et al.  Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. , 2011, Molecular and biochemical parasitology.

[3]  E. Fèvre,et al.  The Burden of Human African Trypanosomiasis , 2008, PLoS neglected tropical diseases.

[4]  S. Cusack,et al.  A hybrid structural model of the complete Brugia malayi cytoplasmic asparaginyl-tRNA synthetase. , 2011, Journal of molecular biology.

[5]  F. Buckner,et al.  Distinct states of methionyl-tRNA synthetase indicate inhibitor binding by conformational selection. , 2012, Structure.

[6]  B. Lorber,et al.  Plasmodial Aspartyl-tRNA Synthetases and Peculiarities in Plasmodium falciparum* , 2009, The Journal of Biological Chemistry.

[7]  P. Marsden,et al.  Expression in Cardiac Myocytes In Vitro and In Vivo p 38 MAP Kinase Signaling Cascade Regulates Cyclooxygenase-2 − MAP Kinase Kinase 6 , 2003 .

[8]  X. Liang,et al.  Tyrosyl-tRNA synthetase inhibitors as antibacterial agents: synthesis, molecular docking and structure-activity relationship analysis of 3-aryl-4-arylaminofuran-2(5H)-ones. , 2011, European journal of medicinal chemistry.

[9]  T. Nozaki,et al.  Current Therapeutics, Their Problems, and Sulfur-Containing-Amino-Acid Metabolism as a Novel Target against Infections by “Amitochondriate” Protozoan Parasites , 2007, Clinical Microbiology Reviews.

[10]  J. Clardy,et al.  Characterization of Plasmodium Liver Stage Inhibition by Halofuginone , 2012, ChemMedChem.

[11]  P. Gao,et al.  Brugia malayi asparaginyl-transfer RNA synthetase induces chemotaxis of human leukocytes and activates G-protein-coupled receptors CXCR1 and CXCR2. , 2006, The Journal of infectious diseases.

[12]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Hasenbank,et al.  Effect of borrelidin on the threonyl-tRNA-synthetase activity and the regulation of threonine-biosynthetic enzymes in Saccharomyces cerivisiae , 2004, Molecular and General Genetics MGG.

[14]  A. Fosberry,et al.  The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. , 2002, Bioorganic & medicinal chemistry letters.

[15]  P. Caspers,et al.  Asparaginyl-tRNA synthetase pre-transfer editing assay. , 2011, Current drug discovery technologies.

[16]  Sunghoon Kim,et al.  Aminoacyl-tRNA synthetase complexes: beyond translation , 2004, Journal of Cell Science.

[17]  J. Baird,et al.  Effectiveness of antimalarial drugs. , 2005, The New England journal of medicine.

[18]  A. Pope,et al.  Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of four stereoisomeric analogues of the natural product SB-219383. , 2000, Bioorganic & medicinal chemistry letters.

[19]  B. L. Lee,et al.  Anticoccidial evaluation of halofuginone, lasalocid, maduramicin, monensin and salinomycin. , 1988, Veterinary parasitology.

[20]  Wim G. J. Hol,et al.  Selective Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Trypanosoma brucei Infection in Mice , 2011, Antimicrobial Agents and Chemotherapy.

[21]  C. Janson,et al.  Interaction of tyrosyl aryl dipeptides with S. aureus tyrosyl tRNA synthetase: inhibition and crystal structure of a complex. , 1999, Bioorganic & medicinal chemistry letters.

[22]  Juan B Rodriguez,et al.  New antibacterials for the treatment of toxoplasmosis; a patent review , 2012, Expert opinion on therapeutic patents.

[23]  Amit Sharma,et al.  Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum , 2011, Scientific reports.

[24]  Yaxue Zhao,et al.  Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents. , 2011, Journal of medicinal chemistry.

[25]  S. Choi,et al.  Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics , 2003, Applied Microbiology and Biotechnology.

[26]  M. Gregory,et al.  Separation of anti-angiogenic and cytotoxic activities of borrelidin by modification at the C17 side chain. , 2006, Bioorganic & medicinal chemistry letters.

[27]  D. Söll,et al.  A Unique Hydrophobic Cluster Near the Active Site Contributes to Differences in Borrelidin Inhibition among Threonyl-tRNA Synthetases* , 2005, Journal of Biological Chemistry.

[28]  A. Van Aerschot,et al.  Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. , 2011, European journal of medicinal chemistry.

[29]  S. Ralph,et al.  Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. , 2012, International journal for parasitology.

[30]  A. Duggan The treatment of African trypanosomiasis. , 1973, Tropical doctor.

[31]  L. Kuhn,et al.  Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase. , 2012, Molecular and biochemical parasitology.

[32]  T. Kaisho,et al.  In Vitro and In Vivo Antibacterial Activities of TAK-083, an Agent for Treatment of Helicobacter pyloriInfection , 2001, Antimicrobial Agents and Chemotherapy.

[33]  D. Lacombe,et al.  Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours. , 2006, European journal of cancer.

[34]  O. Nureki,et al.  Structural Basis for the Recognition of Isoleucyl-Adenylate and an Antibiotic, Mupirocin, by Isoleucyl-tRNA Synthetase* , 2001, The Journal of Biological Chemistry.

[35]  M. Towle,et al.  Anti-angiogenesis effects of borrelidin are mediated through distinct pathways: threonyl-tRNA synthetase and caspases are independently involved in suppression of proliferation and induction of apoptosis in endothelial cells. , 2003, The Journal of antibiotics.

[36]  Mark S. Sundrud,et al.  Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase , 2011, Nature chemical biology.

[37]  C. Lange,et al.  Treatment of latent infection with Mycobacterium tuberculosis: update 2010 , 2011, European Respiratory Journal.

[38]  Juan Peng,et al.  Synthesis, structure, molecular docking, and structure-activity relationship analysis of enamines: 3-aryl-4-alkylaminofuran-2(5H)-ones as potential antibacterials. , 2011, Bioorganic & medicinal chemistry.

[39]  David L. Smith,et al.  A new world malaria map: Plasmodium falciparum endemicity in 2010 , 2011, Malaria Journal.

[40]  T. Jarvis,et al.  Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. , 2009, The Journal of antimicrobial chemotherapy.

[41]  F. Buckner,et al.  Urea-based inhibitors of Trypanosoma brucei methionyl-tRNA synthetase: selectivity and in vivo characterization. , 2012, Journal of medicinal chemistry.

[42]  E. Green,et al.  The role of aminoacyl-tRNA synthetases in genetic diseases. , 2008, Annual review of genomics and human genetics.

[43]  E. Cesarman,et al.  Phase II AIDS Malignancy Consortium Trial of Topical Halofuginone in AIDS-Related Kaposi Sarcoma , 2011, Journal of acquired immune deficiency syndromes.

[44]  Hidetoshi Takahashi,et al.  Borrelidin inhibits a cyclin-dependent kinase (CDK), Cdc28/Cln2, of Saccharomyces cerevisiae. , 2001, The Journal of antibiotics.

[45]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[46]  J. Perona,et al.  Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. , 2003, Journal of molecular biology.

[47]  Xiang-Lei Yang,et al.  ATP-Directed Capture of Bioactive Herbal-Based Medicine on Human tRNA Synthetase , 2012, Nature.

[48]  B Gryseels,et al.  Drug resistance in human helminths: current situation and lessons from livestock. , 2000, Clinical microbiology reviews.

[49]  David L. Smith,et al.  A World Malaria Map: Plasmodium falciparum Endemicity in 2007 , 2009, PLoS medicine.

[50]  D. Söll,et al.  Trans-editing of mischarged tRNAs , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. K. Forrest,et al.  Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase with potent antibacterial activity against gram-positive pathogens. , 2002, Journal of medicinal chemistry.

[52]  S. Ōmura,et al.  Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum , 2011, The Journal of Antibiotics.

[53]  Guo-Jing Yang,et al.  A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination , 2012, PLoS neglected tropical diseases.

[54]  A. Schneider,et al.  Mitochondrial translation in trypanosomatids: a novel target for chemotherapy? , 2011, Trends in parasitology.

[55]  I. Tanaka,et al.  Molecular basis of alanine discrimination in editing site. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Eriani,et al.  The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation , 2013, Nucleic acids research.

[57]  E. Novoa,et al.  Selective Inhibition of an Apicoplastic Aminoacyl‐tRNA Synthetase from Plasmodium falciparum , 2013, Chembiochem : a European journal of chemical biology.

[58]  L. Meng,et al.  Febrifugine analogue compounds: synthesis and antimalarial evaluation. , 2012, Bioorganic & medicinal chemistry.

[59]  Xiang-Lei Yang,et al.  The C-Ala Domain Brings Together Editing and Aminoacylation Functions on One tRNA , 2009, Science.

[60]  S. Ackerman,et al.  Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration , 2006, Nature.

[61]  Shigeyuki Yokoyama,et al.  Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition , 2005, Nature Structural &Molecular Biology.

[62]  B. Shen,et al.  Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. , 2011, Organic letters.

[63]  A. K. Forrest,et al.  Optimisation of aryl substitution leading to potent methionyl tRNA synthetase inhibitors with excellent gram-positive antibacterial activity. , 2003, Bioorganic & medicinal chemistry letters.

[64]  Xiangjing Wang,et al.  Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae. , 2012, Journal of agricultural and food chemistry.

[65]  N. Maršić,et al.  In Vitro Activity and In Vivo Efficacy of Icofungipen (PLD-118), a Novel Oral Antifungal Agent, against the Pathogenic Yeast Candida albicans , 2006, Antimicrobial Agents and Chemotherapy.

[66]  The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs. , 2010, Journal of structural biology.

[67]  Pengcheng Lv,et al.  Aminoacyl-tRNA synthetase inhibitors as potent antibacterials. , 2012, Current medicinal chemistry.

[68]  Anmol Chandele,et al.  Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. , 2011, Nature communications.

[69]  F. Buckner,et al.  Induced Resistance to Methionyl-tRNA Synthetase Inhibitors in Trypanosoma brucei Is Due to Overexpression of the Target , 2013, Antimicrobial Agents and Chemotherapy.

[70]  L. Ribas de Pouplana,et al.  Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. , 2013, Acta crystallographica. Section D, Biological crystallography.

[71]  I. Tarassov,et al.  Noncanonical functions of aminoacyl-tRNA synthetases , 2012, Biochemistry (Moscow).

[72]  D. Leroy,et al.  Antimalarial drug discovery – the path towards eradication , 2013, Parasitology.

[73]  S. Ralph,et al.  Protein translation in Plasmodium parasites. , 2011, Trends in parasitology.

[74]  J. Leykam,et al.  Expression, localization and alternative function of cytoplasmic asparaginyl-tRNA synthetase in Brugia malayi. , 2003, Molecular and biochemical parasitology.

[75]  John A. Tallarico,et al.  Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin , 2012, Cell host & microbe.

[76]  Mathieu Nacher,et al.  Helminth-infected patients with malaria: a low profile transmission hub? , 2012, Malaria Journal.

[77]  S. Ōmura,et al.  Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites. , 2013, Bioorganic & medicinal chemistry letters.

[78]  D. Söll,et al.  Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. A. Rubio,et al.  C to U editing of the anticodon of imported mitochondrial tRNATrp allows decoding of the UGA stop codon in Leishmania tarentolae , 1999, The EMBO journal.

[80]  F. Buckner,et al.  Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. , 2013, Molecular and biochemical parasitology.

[81]  N. Brattig,et al.  Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. , 2001, Veterinary parasitology.

[82]  R. Leberman,et al.  An immunodominant antigen of Brugia malayi is an asparaginyl‐tRNA synthetase , 1995, FEBS letters.

[83]  D. Söll,et al.  A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  V. S. Gowri,et al.  Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major , 2012, BMC Genomics.

[85]  O. Nureki,et al.  The structure of alanyl-tRNA synthetase with editing domain , 2009, Proceedings of the National Academy of Sciences.

[86]  A. Hochberg,et al.  Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. , 1999, Cancer research.

[87]  R. Wilson,et al.  Progress with parasite plastids. , 2002, Journal of molecular biology.

[88]  Yaxue Zhao,et al.  Discovery of N-(4-sulfamoylphenyl)thioureas as Trypanosoma brucei leucyl-tRNA synthetase inhibitors. , 2013, Organic & biomolecular chemistry.

[89]  Rao Kv PA 155A: a new antibiotic. , 1960 .

[90]  F. Buckner,et al.  The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. , 2011, Journal of molecular biology.

[91]  N. Janjić,et al.  Antibacterial Activity of REP8839, a New Antibiotic for Topical Use , 2005, Antimicrobial Agents and Chemotherapy.

[92]  A. Schneider Unique aspects of mitochondrial biogenesis in trypanosomatids. , 2001, International journal for parasitology.

[93]  Vincent Hernandez,et al.  Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. , 2009, Journal of molecular biology.

[94]  Weiliang Zhu,et al.  Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis. , 2012, Bioorganic & medicinal chemistry.

[95]  F. Buckner,et al.  Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. , 2011, Biochimie.

[96]  J. Jernigan,et al.  Mupirocin resistance. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[97]  Ian Critchley,et al.  Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents , 2007, Expert opinion on investigational drugs.

[98]  L. Ribas de Pouplana,et al.  Insights into the preclinical treatment of blood‐stage malaria by the antibiotic borrelidin , 2013, British journal of pharmacology.

[99]  Jing-Jun Dong,et al.  3-Aryl-4-acyloxyethoxyfuran-2(5H)-ones as inhibitors of tyrosyl-tRNA synthetase: synthesis, molecular docking and antibacterial evaluation. , 2013, Bioorganic & Medicinal Chemistry.

[100]  D. Elliott,et al.  Nematode Asparaginyl-tRNA Synthetase Resolves Intestinal Inflammation in Mice with T-Cell Transfer Colitis , 2012, Clinical and Vaccine Immunology.

[101]  Paul Schimmel,et al.  Essential nontranslational functions of tRNA synthetases. , 2013, Nature chemical biology.

[102]  Erika L. Smith,et al.  Synthesis and evaluation of 4-quinazolinone compounds as potential antimalarial agents. , 2010, European journal of medicinal chemistry.

[103]  Hye-Sook Kim,et al.  Catalytic Asymmetric Synthesis of Antimalarial Alkaloids Febrifugine and Isofebrifugine and Their Biological Activity. , 1999, The Journal of organic chemistry.

[104]  F. Dean,et al.  Inhibition of Methionyl-tRNA Synthetase by REP8839 and Effects of Resistance Mutations on Enzyme Activity , 2008, Antimicrobial Agents and Chemotherapy.

[105]  R. Hill,et al.  Mupirocin ('pseudomonic acid')--a promising new topical antimicrobial agent. , 1987, The Journal of antimicrobial chemotherapy.

[106]  Guo-Jing Yang,et al.  A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination , 2012, PLoS neglected tropical diseases.

[107]  J. McCarthy,et al.  A Research Agenda for Helminth Diseases of Humans: The Problem of Helminthiases , 2012, PLoS neglected tropical diseases.

[108]  Vincent Hernandez,et al.  An Antifungal Agent Inhibits an Aminoacyl-tRNA Synthetase by Trapping tRNA in the Editing Site , 2007, Science.

[109]  S. Croft,et al.  Leishmaniasis chemotherapy--challenges and opportunities. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[110]  K. Kristensson,et al.  Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. , 2005, The Journal of infectious diseases.

[111]  R. Greenwood,et al.  Confirmation of the antibacterial mode of action of SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. , 2002, The Journal of antibiotics.

[112]  Tingting Huang,et al.  (#Issue1)Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I, and J , 2013, Journal of antibiotics (Tokyo. 1968).

[113]  P. Upcroft,et al.  Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa , 2001, Clinical Microbiology Reviews.

[114]  Sai Chetan K. Sukuru,et al.  Discovering New Classes of Brugia malayi Asparaginyl-tRNA Synthetase Inhibitors and Relating Specificity to Conformational Change , 2006, J. Comput. Aided Mol. Des..

[115]  E. Winzeler,et al.  Validation of isoleucine utilization targets in Plasmodium falciparum , 2011, Proceedings of the National Academy of Sciences.

[116]  J. Rossignol Cryptosporidium and Giardia: treatment options and prospects for new drugs. , 2010, Experimental parasitology.

[117]  B. Shen,et al.  New WS9326A congeners from Streptomyces sp. 9078 inhibiting Brugia malayi asparaginyl-tRNA synthetase. , 2012, Organic letters.

[118]  K. Stuart,et al.  Inhibition of Isoleucyl-tRNA Synthetase as a Potential Treatment for Human African Trypanosomiasis* , 2013, The Journal of Biological Chemistry.

[119]  O. Nureki,et al.  [Aminoacyl-tRNA synthetase]. , 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[120]  Arvind Sharma,et al.  An Appended Domain Results in an Unusual Architecture for Malaria Parasite Tryptophanyl-tRNA Synthetase , 2013, PloS one.

[121]  S. Ready,et al.  SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. I. Fermentation, isolation and properties. , 2000, The Journal of antibiotics.

[122]  Robin Shattock,et al.  In Vitro and In Vivo: The Story of Nonoxynol 9 , 2005, Journal of acquired immune deficiency syndromes.

[123]  S. Ōmura,et al.  In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia. , 2003, The Journal of antibiotics.

[124]  Stéphane Chiron,et al.  Mitochondrial Translation , 2005, Genetics.

[125]  Simon Croft,et al.  Kinetoplastids: related protozoan pathogens, different diseases. , 2008, The Journal of clinical investigation.