Compression, Significance, and Accuracy

[1]  Claude Sammut,et al.  Using Inverse Resolution to Learn Relations from Experiments , 1991, ML.

[2]  Stephen Muggleton,et al.  Non-monotonic learning , 1991 .

[3]  M J Sternberg,et al.  Machine learning approach for the prediction of protein secondary structure. , 1990, Journal of molecular biology.

[4]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[5]  Stephen Muggleton,et al.  An Experimental Comparison of Human and Machine Learning Formalisms , 1989, ML.

[6]  Ming Li,et al.  Inductive reasoning and Kolmogorov complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[7]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[8]  Stephen Muggleton,et al.  A Strategy for Constructing New Predicates in First-Order Logic , 1988, EWSL.

[9]  David Haussler,et al.  Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension , 1986, STOC '86.

[10]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[11]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[12]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[13]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[14]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[15]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..