On the Anti-Ramsey Property of Ramanujan Graphs
暂无分享,去创建一个
[1] Enrico Bombieri,et al. On the large sieve , 1965 .
[2] P. Erdös,et al. A combinatorial theorem , 1950 .
[3] Carsten Thomassen,et al. Path and cycle sub-ramsey numbers and an edge-colouring conjecture , 1986, Discret. Math..
[4] Paul Erdös,et al. Some old and new problems in various branches of combinatorics , 1997, Discret. Math..
[5] Joel Friedman,et al. Expanding graphs contain all small trees , 1987, Comb..
[6] A. Tsarpalias,et al. A Combinatorial Theorem , 1981, J. Comb. Theory, Ser. A.
[7] Noga Alon,et al. Explicit construction of linear sized tolerant networks , 1988, Discret. Math..
[8] Bernd Voigt,et al. Canonizing Ramsey theorems for finite graphs and hypergraphs , 1985, Discret. Math..
[9] Alan M. Frieze,et al. Polychromatic Hamilton cycles , 1993, Discret. Math..
[10] Vojtěch Rödl,et al. Partite Construction and Ramsey Space Systems , 1990 .
[11] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[12] Vojtech Rödl,et al. Rainbow Subgraphs in Properly Edge-colored Graphs , 1992, Random Struct. Algorithms.
[13] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[14] N. Alon,et al. il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .
[15] Norman L. Biggs,et al. Note on the girth of Ramanujan graphs , 1990, J. Comb. Theory, Ser. B.
[16] László Babai. An anti-Ramsey theorem , 1985, Graphs Comb..
[17] József Beck,et al. On size Ramsey number of paths, trees, and circuits. I , 1983, J. Graph Theory.
[18] M. Murty. Ramanujan Graphs , 1965 .