A new four-parameter lifetime distribution

A new four-parameter distribution is introduced. It appears to be a distribution allowing for and only allowing for monotonically increasing, bathtub-shaped and upside down bathtub-shaped hazard rates. It contains as particular cases many of the known lifetime distributions. Some mathematical properties of the new distribution, including estimation procedures by the method of maximum likelihood are derived. Some simulations are run to assess the performance of the maximum-likelihood estimators. Finally, the flexibility of the new distribution is illustrated using a real data set.

[1]  Francisco Cribari-Neto,et al.  A generalization of the exponential-Poisson distribution , 2008, 0809.1894.

[2]  Gauss M. Cordeiro,et al.  Computational Statistics and Data Analysis a Generalized Modified Weibull Distribution for Lifetime Modeling , 2022 .

[3]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[4]  Wenhao Gui,et al.  The Lindley-Poisson distribution in lifetime analysis and its properties , 2014 .

[5]  Giovanni Maria Giorgi Concentration Index, Bonferroni , 2006 .

[6]  Broderick O. Oluyede,et al.  A New Class of Generalized Power Lindley Distribution with Applications to Lifetime Data , 2016 .

[7]  Francisco Louzada,et al.  The complementary Weibull geometric distribution , 2014 .

[8]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[9]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[10]  M. Kendall Theoretical Statistics , 1956, Nature.

[11]  Eisa Mahmoudi,et al.  A new two parameter lifetime distribution: model and properties , 2012 .

[12]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[13]  M. E. Ghitany,et al.  A two-parameter weighted Lindley distribution and its applications to survival data , 2011, Math. Comput. Simul..

[14]  Chin-Diew Lai,et al.  Estimating the turning point of a bathtub-shaped failure distribution , 2008 .

[15]  Giovanni Maria Giorgi,et al.  A look at the Bonferroni inequality measure in a reliability framework , 2005 .

[16]  Mohammad Z. Raqab,et al.  Generalized Rayleigh Distribution , 2011, International Encyclopedia of Statistical Science.

[17]  Gauss M. Cordeiro,et al.  The exponentiated generalized gamma distribution with application to lifetime data , 2011 .

[18]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[19]  Samir K. Ashour,et al.  Exponentiated power Lindley distribution , 2015, Journal of advanced research.

[20]  M. J. S. Khan,et al.  A Generalized Exponential Distribution , 1987 .

[21]  Gauss M. Cordeiro,et al.  A new family of generalized distributions , 2011 .

[22]  Eisa Mahmoudi,et al.  Exponentiated Weibull-Poisson distribution: Model, properties and applications , 2012, Math. Comput. Simul..

[23]  S. Loukas,et al.  A lifetime distribution with decreasing failure rate , 1998 .

[24]  Pushpa L. Gupta,et al.  On the moments of residual life in reliability and some characterization results , 1983 .

[25]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[26]  Harshinder Singh,et al.  ON REDUNDANCY ALLOCATIONS IN SYSTEMS , 1994 .

[27]  Broderick O. Oluyede,et al.  A new class of generalized Lindley distributions with applications , 2015 .

[28]  Debasis Kundu,et al.  Generalized Linear Failure Rate Distribution , 2009 .

[29]  J. Behboodian,et al.  The beta Weibull-geometric distribution , 2013 .

[30]  Jonathan R. M. Hosking,et al.  The four-parameter kappa distribution , 1994, IBM J. Res. Dev..

[31]  N. Balakrishnan,et al.  The gamma-exponentiated exponential distribution , 2012 .

[32]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[33]  Loon Ching Tang,et al.  A Model for Upside-Down Bathtub-Shaped Mean Residual Life and Its Properties , 2009, IEEE Transactions on Reliability.

[34]  Ali Dolati,et al.  Generalized Lindley Distribution , 2009 .

[35]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[36]  Saralees Nadarajah,et al.  A new family of compound lifetime distributions , 2014, Kybernetika.

[37]  Kyung S. Park Effect of Burn-In on Mean Residual Life , 1985, IEEE Transactions on Reliability.

[38]  Gauss M. Cordeiro,et al.  A new distribution with decreasing, increasing and upside-down bathtub failure rate , 2010, Comput. Stat. Data Anal..

[39]  Gauss M. Cordeiro,et al.  An extended Lomax distribution , 2013 .

[40]  Mojtaba Ganjali,et al.  On some lifetime distributions with decreasing failure rate , 2009, Comput. Stat. Data Anal..

[41]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[42]  Eisa Mahmoudi,et al.  Exponentiated Weibull-logarithmic Distribution: Model, Properties and Applications , 2014 .

[43]  Alice Lemos Morais,et al.  A compound class of Weibull and power series distributions , 2011, Comput. Stat. Data Anal..

[44]  Gauss M. Cordeiro,et al.  The Burr XII Negative Binomial Distribution with Applications to Lifetime Data , 2015 .

[45]  The Complementary Exponential-Geometric Distribution for Lifetime Data , 2010 .

[46]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[47]  Mojtaba Ganjali,et al.  The generalized modified Weibull power series distribution: Theory and applications , 2016, Comput. Stat. Data Anal..

[48]  Francisco Louzada,et al.  An extended Lindley distribution , 2012 .

[49]  S. Loukas,et al.  On an extension of the exponential-geometric distribution , 2005 .

[50]  Gauss M. Cordeiro,et al.  The beta log-normal distribution , 2013 .

[51]  Jie Mi Bathtub failure rate and upside-down bathtub mean residual life , 1995 .

[52]  Chanchal Kundu,et al.  Some Reliability Properties of the Inactivity Time , 2010 .

[53]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[54]  Gauss M. Cordeiro,et al.  The compound class of extended Weibull power series distributions , 2012, Comput. Stat. Data Anal..

[55]  Saralees Nadarajah,et al.  A new lifetime distribution , 2014 .

[56]  E. Mahmoudi,et al.  Exponentiated Weibull Power Series Distributions and its Applications , 2012, 1212.5613.

[57]  RELIABILITY PROPERTIES OF EXTENDED LINEAR FAILURE-RATE DISTRIBUTIONS , 2007, Probability in the Engineering and Informational Sciences.

[58]  Sadegh Rezaei,et al.  A two-parameter lifetime distribution with decreasing failure rate , 2008, Comput. Stat. Data Anal..

[59]  M. E. Ghitany,et al.  Reliability Studies of the Log-Exponential Inverse Gaussian Distribution , 2009 .

[60]  Harshinder Singh,et al.  Reliability Properties of Reversed Residual Lifetime , 2003 .

[61]  M. E. Ghitany,et al.  Lindley distribution and its application , 2008, Math. Comput. Simul..

[62]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[63]  Eisa Mahmoudi,et al.  Generalized exponential-power series distributions , 2012, Comput. Stat. Data Anal..

[64]  M. E. Ghitany On a recent generalization of gamma distribution , 1998 .

[65]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[66]  Elisa Lee,et al.  Statistical Methods for Survival Data Analysis: Lee/Survival Data Analysis , 2003 .

[67]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .

[68]  M. E. Ghitany,et al.  Power Lindley distribution and associated inference , 2013, Comput. Stat. Data Anal..

[69]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[70]  Narayanaswamy Balakrishnan,et al.  A General Purpose Approximate Goodness-of-Fit Test , 1995 .

[71]  Gauss M. Cordeiro,et al.  The beta exponentiated Weibull distribution , 2013 .

[72]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[73]  J. Moors,et al.  A quantile alternative for kurtosis , 1988 .