Evaluating Root Parallelization in Go

Parallelizing Monte Carlo tree search (MCTS) has been considered to be a way to improve the strength of Computer Go programs. In this paper, we analyze the performance of two root parallelization methods: the standard strategy based on average selection and our new strategy based on majority voting. As a starting code base, we used Fuego, which is one of the best programs available. Our experimental results with 64 central processing unit (CPU) cores show that majority voting outperforms average selection. Additionally, we show through an extensive analysis that root parallelization has limitations.

[1]  Nicolas Jouandeau,et al.  A Parallel Monte-Carlo Tree Search Algorithm , 2008, Computers and Games.

[2]  Fred Popowich,et al.  Parallel Game-Tree Search , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[4]  Mark G. Brockington,et al.  A Taxonomy of Parallel Game-Tree Search Algorithms , 1996, J. Int. Comput. Games Assoc..

[5]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[6]  Olivier Teytaud,et al.  Modification of UCT with Patterns in Monte-Carlo Go , 2006 .

[7]  Martin Mueller Fuego at the Computer Olympiad in Pamplona 2009: A Tournament Report , 2009 .

[8]  Ikuo Takeuchi,et al.  Parallel Monte-Carlo Tree Search with Simulation Servers , 2010, 2010 International Conference on Technologies and Applications of Artificial Intelligence.

[9]  Jonathan Schaeffer,et al.  APHID Game-Tree Search , 1997 .

[10]  Rémi Coulom,et al.  Computing "Elo Ratings" of Move Patterns in the Game of Go , 2007, J. Int. Comput. Games Assoc..

[11]  Martin Müller,et al.  Fuego—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search , 2010, IEEE Transactions on Computational Intelligence and AI in Games.

[12]  H. Jaap van den Herik,et al.  Parallel Monte-Carlo Tree Search , 2008, Computers and Games.

[13]  Rainer Feldmann Spielbaumsuche mit massiv parallelen Systemen , 1993 .

[14]  T. Cazenave,et al.  On the Parallelization of UCT , 2007 .

[15]  Jonathan Schaeffer,et al.  Distributed Game-Tree Searching , 1989, J. Parallel Distributed Comput..

[16]  Martin Müller,et al.  A Lock-Free Multithreaded Monte-Carlo Tree Search Algorithm , 2009, ACG.

[17]  Jonathan Schaeffer,et al.  Asynchronous parallel game-tree search , 1998 .

[18]  Carl Kesselman,et al.  Generalized communicators in the Message Passing Interface , 1996, Proceedings. Second MPI Developer's Conference.

[19]  David Silver,et al.  Combining online and offline knowledge in UCT , 2007, ICML '07.

[20]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[21]  H. Jaap van den Herik,et al.  Progressive Strategies for Monte-Carlo Tree Search , 2008 .

[22]  Olivier Teytaud,et al.  On the Parallelization of Monte-Carlo planning , 2008, ICINCO 2008.