Toward a History of Mathematics Focused on Procedures

Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.

[1]  David E. Joyce Notes on Richard Dedekind’s Was sind und was sollen die Zahlen? , 2006 .

[2]  G. Polya,et al.  Heuristic Reasoning and the Theory of Probability , 1941 .

[3]  Marx W. Wartofsky The Relation Between Philosophy of Science and History of Science , 1976 .

[4]  Leonhard Euler,et al.  Foundations of Differential Calculus , 2000 .

[5]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[6]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[7]  David Tall,et al.  A Cauchy-Dirac Delta Function , 2012, 1206.0119.

[8]  Vladimir Kanovei,et al.  Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.

[9]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[10]  E. Heine Die Elemente der Functionenlehre. , .

[11]  Archive for History of Exact Sciences , 1960, Nature.

[12]  Tiziana Bascelli,et al.  Galileo’s quanti: understanding infinitesimal magnitudes , 2014 .

[13]  Patrick Riley,et al.  Leibniz's Philosophy of Logic and Language , 1973 .

[14]  Hide Ishiguro,et al.  Leibniz's philosophy of logic and language (2. ed.) , 1990 .

[15]  Douglas M. Jesseph,et al.  Leibniz on The Elimination of Infinitesimals , 2015 .

[16]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[17]  José Ferreirós Domínguez Labyrinth of thought: a history of set theory and its role in modern mathematics , 2007 .

[18]  Vincenzo De Risi Leibniz on the Parallel Postulate and the Foundations of Geometry: The Unpublished Manuscripts , 2016 .

[19]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[20]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[21]  Alexandre V. Borovik,et al.  A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos , 2016, Logica Universalis.

[22]  Richard Dedekind Stetigkeit und irrationale Zahlen / von Richard Dedekind , 1892 .

[23]  Antoni Malet,et al.  Renaissance notions of number and magnitude , 2006 .

[24]  Thomas Brackett Settle Galilean science : essays in the mechanics and dynamics of the discorsi : a thesis presented to the faculty of the graduate school of Cornell University for the degree of Doctor of Philosophy , 1985 .

[25]  W. Luxemburg Non-Standard Analysis , 1977 .

[26]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[27]  Vladimir Kanovei,et al.  Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.

[28]  C. Fraser The calculus as algebraic analysis: Some observations on mathematical analysis in the 18th century , 1989, Archive for History of Exact Sciences.

[29]  Giovanni Ferraro Filosofia e pratica della matematica nell’età dei lumi , 2014 .

[30]  Hide Ishiguro,et al.  Leibniz's Philosophy of Logic and Language , 1972 .

[31]  Graham Hoare,et al.  Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics , 1999, The Mathematical Gazette.

[32]  Giovanni Ferraro,et al.  The rise and development of the theory of series up to the early 1820s , 2007 .

[33]  Jeremy Gray A short life of Euler , 2008 .

[34]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[35]  Richard T. W. Arthur Leibniz’s syncategorematic infinitesimals , 2013 .

[36]  Mikhail G. Katz,et al.  Differential geometry via infinitesimal displacements , 2014, J. Log. Anal..

[37]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[38]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[39]  Mikhail G. Katz,et al.  Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .

[40]  Giovanni Capobianco,et al.  Geometry and analysis in Euler’s integral calculus , 2017 .

[41]  David Sherry,et al.  Fields and the Intelligibility of Contact Action , 2015, Philosophy.

[42]  Piotr Blaszczyk,et al.  Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[43]  Ian Hacking Why Is There Philosophy of Mathematics At All , 2014 .

[44]  Solomon Gandz,et al.  The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350) , 1936, Isis.

[45]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[46]  R. Dedekind,et al.  Was sind und was sollen die Zahlen , 1961 .

[47]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[48]  W. L. Wisan The new science of motion: A study of Galileo's De motu locali , 1974 .

[49]  Giovanni Ferraro,et al.  Some Aspects of Euler's Theory of Series:InexplicableFunctions and the Euler–Maclaurin Summation Formula , 1998 .

[50]  R. Dedekind Stetigkeit und irrationale Zahlen , 2022 .

[51]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[52]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[53]  Paul Benacerraf,et al.  What the numbers could not be , 1983 .

[54]  Vladimir Kanovei,et al.  Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .

[55]  Ian Hacking,et al.  Why is there Philosophy of Mathematics AT ALL? , 2011 .

[56]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[57]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[58]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[59]  Pierre Dugac Charles Méray (1835-1911) et la notion de limite. , 1970 .

[60]  Mariam Thalos,et al.  Why is there Philosophy of Mathematics at all , 2016 .

[61]  G. Cantor Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .

[62]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[63]  Jeremy Gray The Real and the Complex: A History of Analysis in the 19th Century , 2015 .

[64]  Leonhard Euler,et al.  Institutiones calculi differentialis , 1968 .

[65]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[66]  Per Strømholm,et al.  Fermat's methods of maxima and minima and of tangents. A reconstruction , 1968 .

[67]  G. Cantor Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .

[68]  Enrico Giusti Les méthodes des maxima et minima de Fermat , 2009 .

[69]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[70]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[71]  O. Stolz Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .

[72]  Gerald B. Folland Hidden Harmony - Geometric Fantasies: The Rise of Complex Function Theory , 2015, Am. Math. Mon..