Toward a History of Mathematics Focused on Procedures
暂无分享,去创建一个
Vladimir Kanovei | Mikhail G. Katz | Karin U. Katz | David Sherry | Semen S. Kutateladze | Piotr Błaszczyk | S. Kutateladze | V. Kanovei | David Sherry | M. Katz | Piotr Błaszczyk | Semen Samsonovich Kutateladze
[1] David E. Joyce. Notes on Richard Dedekind’s Was sind und was sollen die Zahlen? , 2006 .
[2] G. Polya,et al. Heuristic Reasoning and the Theory of Probability , 1941 .
[3] Marx W. Wartofsky. The Relation Between Philosophy of Science and History of Science , 1976 .
[4] Leonhard Euler,et al. Foundations of Differential Calculus , 2000 .
[5] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[6] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[7] David Tall,et al. A Cauchy-Dirac Delta Function , 2012, 1206.0119.
[8] Vladimir Kanovei,et al. Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.
[9] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[10] E. Heine. Die Elemente der Functionenlehre. , .
[11] Archive for History of Exact Sciences , 1960, Nature.
[12] Tiziana Bascelli,et al. Galileo’s quanti: understanding infinitesimal magnitudes , 2014 .
[13] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[14] Hide Ishiguro,et al. Leibniz's philosophy of logic and language (2. ed.) , 1990 .
[15] Douglas M. Jesseph,et al. Leibniz on The Elimination of Infinitesimals , 2015 .
[16] Paul Benacerraf,et al. Philosophy of mathematics: What numbers could not be , 1965 .
[17] José Ferreirós Domínguez. Labyrinth of thought: a history of set theory and its role in modern mathematics , 2007 .
[18] Vincenzo De Risi. Leibniz on the Parallel Postulate and the Foundations of Geometry: The Unpublished Manuscripts , 2016 .
[19] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[20] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[21] Alexandre V. Borovik,et al. A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos , 2016, Logica Universalis.
[22] Richard Dedekind. Stetigkeit und irrationale Zahlen / von Richard Dedekind , 1892 .
[23] Antoni Malet,et al. Renaissance notions of number and magnitude , 2006 .
[24] Thomas Brackett Settle. Galilean science : essays in the mechanics and dynamics of the discorsi : a thesis presented to the faculty of the graduate school of Cornell University for the degree of Doctor of Philosophy , 1985 .
[25] W. Luxemburg. Non-Standard Analysis , 1977 .
[26] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[27] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[28] C. Fraser. The calculus as algebraic analysis: Some observations on mathematical analysis in the 18th century , 1989, Archive for History of Exact Sciences.
[29] Giovanni Ferraro. Filosofia e pratica della matematica nell’età dei lumi , 2014 .
[30] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[31] Graham Hoare,et al. Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics , 1999, The Mathematical Gazette.
[32] Giovanni Ferraro,et al. The rise and development of the theory of series up to the early 1820s , 2007 .
[33] Jeremy Gray. A short life of Euler , 2008 .
[34] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[35] Richard T. W. Arthur. Leibniz’s syncategorematic infinitesimals , 2013 .
[36] Mikhail G. Katz,et al. Differential geometry via infinitesimal displacements , 2014, J. Log. Anal..
[37] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[38] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[39] Mikhail G. Katz,et al. Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .
[40] Giovanni Capobianco,et al. Geometry and analysis in Euler’s integral calculus , 2017 .
[41] David Sherry,et al. Fields and the Intelligibility of Contact Action , 2015, Philosophy.
[42] Piotr Blaszczyk,et al. Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[43] Ian Hacking. Why Is There Philosophy of Mathematics At All , 2014 .
[44] Solomon Gandz,et al. The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350) , 1936, Isis.
[45] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[46] R. Dedekind,et al. Was sind und was sollen die Zahlen , 1961 .
[47] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[48] W. L. Wisan. The new science of motion: A study of Galileo's De motu locali , 1974 .
[49] Giovanni Ferraro,et al. Some Aspects of Euler's Theory of Series:InexplicableFunctions and the Euler–Maclaurin Summation Formula , 1998 .
[50] R. Dedekind. Stetigkeit und irrationale Zahlen , 2022 .
[51] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[52] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[53] Paul Benacerraf,et al. What the numbers could not be , 1983 .
[54] Vladimir Kanovei,et al. Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .
[55] Ian Hacking,et al. Why is there Philosophy of Mathematics AT ALL? , 2011 .
[56] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[57] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[58] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[59] Pierre Dugac. Charles Méray (1835-1911) et la notion de limite. , 1970 .
[60] Mariam Thalos,et al. Why is there Philosophy of Mathematics at all , 2016 .
[61] G. Cantor. Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .
[62] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[63] Jeremy Gray. The Real and the Complex: A History of Analysis in the 19th Century , 2015 .
[64] Leonhard Euler,et al. Institutiones calculi differentialis , 1968 .
[65] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[66] Per Strømholm,et al. Fermat's methods of maxima and minima and of tangents. A reconstruction , 1968 .
[67] G. Cantor. Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .
[68] Enrico Giusti. Les méthodes des maxima et minima de Fermat , 2009 .
[69] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[70] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[71] O. Stolz. Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .
[72] Gerald B. Folland. Hidden Harmony - Geometric Fantasies: The Rise of Complex Function Theory , 2015, Am. Math. Mon..