3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence**

Summary of the physical properties of the carbazole monomer, oligomers,and other carbazole-based molecules. Compound T d [a][°C] T g [b][°C] k max, abs. [c][nm] k max, fluo. [d][nm] k max, phos. [e][nm] E singlet [f][eV] E triplet [g][eV]Cz – – 343 351 409 3.53 3.03BCz1 299 67 344 376 416 3.30 2.98BCz2 334 104 343 373 413 3.32 3.00BCz3 322 77 358 414 448 3.00 2.77TCz1 384 88 344 389 424 3.19 2.92TCz2 413 150 343 388 422 3.20 2.94CBP – 62 341 355 485 3.49 2.56mCP – 60 340 348 427 3.56 2.90SimCP – 101 [h] – – 427 [h] – 2.90 [h] [a] Temperature corresponding to a 5% weight loss in thermogravimetric analysis.[b] Glass-transition temperature determined by differential scanning calorimetry.[c] Absorption maximum in solutions (1×10 –5 in toluene). [d] Fluorescence peak insolutions (1×10 –5 in toluene). [e] Phosphorescence peak in solutions (1×10 in tolu-ene, 77 K). [f] Singlet energy estimated from the highest-energy fluorescence peak.[g] Triplet energy estimated from the highest-energy phosphorescence peak. [h] Prop-erties of SimCP were obtained from reference [7].

[1]  G. Fleming,et al.  Triplet-triplet energy-transfer coupling: theory and calculation. , 2006, The Journal of chemical physics.

[2]  Yasuhiko Shirota,et al.  Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications , 2005 .

[3]  Yun Chi,et al.  New Dopant and Host Materials for Blue‐Light‐Emitting Phosphorescent Organic Electroluminescent Devices , 2005 .

[4]  D. Beljonne,et al.  Quantum‐Chemical Design of Host Materials for Full‐Color Triplet Emission , 2004 .

[5]  Stephen R. Forrest,et al.  Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices , 2004 .

[6]  A. van Dijken,et al.  Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules. , 2004, Journal of the American Chemical Society.

[7]  Jian Li,et al.  Efficient, deep-blue organic electrophosphorescence by guest charge trapping , 2003 .

[8]  Fumio Sato,et al.  Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices , 2003 .

[9]  Stephen R. Forrest,et al.  Blue organic electrophosphorescence using exothermic host–guest energy transfer , 2003 .

[10]  J. Gražulevičius,et al.  Synthesis and properties of the polymers containing 3,3′-dicarbazyl units in the main chain and their model compounds , 2002 .

[11]  J. Gražulevičius,et al.  Synthesis and properties of poly(3,9-carbazole) and low-molar-mass glass-forming carbazole compounds , 2002 .

[12]  J. Gražulevičius,et al.  Hole-transporting molecular glasses based on carbazole and diphenylamine moieties , 2001 .

[13]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[14]  Stephen R. Forrest,et al.  Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials , 2001 .

[15]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[16]  Friedrich-Karl Bruder,et al.  PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes , 2000 .

[17]  Y. Shirota Organic materials for electronic and optoelectronic devices , 2000 .

[18]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[19]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[20]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[21]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[22]  Martin Head-Gordon,et al.  ANALYSIS OF ELECTRONIC TRANSITIONS AS THE DIFFERENCE OF ELECTRON ATTACHMENT AND DETACHMENT DENSITIES , 1995 .

[23]  Katsutoshi Nagai,et al.  Multilayer White Light-Emitting Organic Electroluminescent Device , 1995, Science.

[24]  Hiroshi Inada,et al.  Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4′,4″‐Tri(N‐carbazolyl)triphenylamine (TCTA) and 4,4′,4″‐Tris(3‐methylphenylphenylamino)triphenylamine (m‐MTDATA), as hole‐transport materials , 1994 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  A. Szabo,et al.  Modern quantum chemistry , 1982 .