Overview and status of metal S/D Schottky-barrier MOSFET technology

In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height.

[1]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[2]  M. P. Lepselter,et al.  SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain , 1968 .

[3]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[4]  S. Sze,et al.  Schottky MOSFET for VLSI , 1981, 1981 International Electron Devices Meeting.

[5]  C. J. Koeneke,et al.  Lightly doped Schottky MOSFET , 1982, 1982 International Electron Devices Meeting.

[6]  CMOS Latch-up elimination using Schottky barrier PMOS , 1982, 1982 International Electron Devices Meeting.

[7]  L. Akers,et al.  Latchup-free Schottky-barrier CMOS , 1983, IEEE Transactions on Electron Devices.

[8]  T. Mochizuki,et al.  An n-channel MOSFET with Schottky source and drain , 1984, IEEE Electron Device Letters.

[9]  A new p-channel MOSFET structure with Schottky-clamped source and drain , 1984, 1984 International Electron Devices Meeting.

[10]  Robert W. Dutton,et al.  A VLSI-Suitable Schottky-Barrier CMOS Process , 1985, IEEE Journal of Solid-State Circuits.

[11]  A Novel Process for High‐Performance Schottky Barrier PMOS , 1989 .

[12]  M. Green,et al.  Characteristics of p-type PtSi Schottky diodes under reverse bias , 1990 .

[13]  Reiji Hattori,et al.  A New Type of Tunnel-Effect Transistor Employing Internal Field Emission of Schottky Barrier Junction , 1992 .

[14]  K. Hinooka,et al.  Insulated-gate field-effect transistor and its manufacture , 1992 .

[15]  A new type of Schottky tunnel transistor , 1994, IEEE Electron Device Letters.

[16]  Reiji Hattori,et al.  Numerical Simulation of Tunnel Effect Transistors Employing Internal Field Emission of Schottky Barrier Junction , 1994 .

[17]  Nanometer scale MOSFETs and STM patterning on Si , 1994 .

[18]  P. Scott Carney,et al.  Silicon field-effect transistor based on quantum tunneling , 1994 .

[19]  Kevin K. Chan,et al.  New complimentary metal–oxide semiconductor technology with self-aligned Schottky source/drain and low-resistance T gates , 1997 .

[20]  D. Chidambarrao,et al.  Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[21]  J. Snyder,et al.  SUB-40 NM PTSI SCHOTTKY SOURCE/DRAIN METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS , 1999 .

[22]  35 nm metal gate SOI-p-MOSFETs with PtSi Schottky source/drain , 1999, 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393).

[23]  Masahiro Asada,et al.  Analysis of Short-Channel Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect Transistor on Silicon-on-Insulator Substrate and Demonstration of Sub-50-nm n-type Devices with Metal Gate , 1999 .

[24]  Masahiro Asada,et al.  A 25-nm-long Channel Metal-Gate p-Type Schottky Source/Drain Metal-Oxide-Semiconductor Field Effect Transistor on Separation-by-Implanted-Oxygen Substrate , 2000 .

[25]  Shinichi Takagi,et al.  Enhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistors , 2000 .

[26]  C. Hu,et al.  A 20 nm gate-length ultra-thin body p-MOSFET with silicide source/drain , 2000 .

[27]  Umberto Ravaioli,et al.  Simulation of Schottky barrier MOSFETs with a coupled quantum injection/Monte Carlo technique , 2000 .

[28]  C. Hu,et al.  Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[29]  C. Hu,et al.  Design analysis of thin-body silicide source/drain devices , 2001, 2001 IEEE International SOI Conference. Proceedings (Cat. No.01CH37207).

[30]  Y. Yamashita,et al.  50-nm gate Schottky source/drain p-MOSFETs with a SiGe channel , 2002, IEEE Electron Device Letters.

[31]  J. Knoch,et al.  Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors , 2002 .

[32]  Mark S. Lundstrom,et al.  A computational study of thin-body, double-gate, Schottky barrier MOSFETs , 2002 .

[33]  C. Faulkner,et al.  Optimizing Schottky S/D offset for 25-nm dual-gate CMOS performance , 2003, IEEE Electron Device Letters.

[34]  Schottky source/drain SOI MOSFET with shallow doped extension , 2003 .

[35]  Low Schottky barrier on n-type Si for n-channel Schottky source/drain MOSFETs , 2003 .

[36]  Benjamin George Eynon,et al.  Limits of strong phase-shift patterning for device research , 2003, SPIE Advanced Lithography.

[37]  A highly manufacturable low power and high speed HfSiO CMOS FET with dual poly-Si gate electrodes , 2003, IEEE International Electron Devices Meeting 2003.

[38]  A. Chin,et al.  N-type Schottky barrier source/drain MOSFET using ytterbium silicide , 2004, IEEE Electron Device Letters.

[39]  J. Koga,et al.  Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[40]  M. Fritze,et al.  High-speed Schottky-barrier pMOSFET with f/sub T/=280 GHz , 2004, IEEE Electron Device Letters.

[41]  Increase in Drive Current by Pt/W Protection on Short-Channel Schottky Source/Drain Metal–Oxide–Semiconductor Field-Effect Transistors with Metal Gate , 2004 .

[42]  CMOS application of Schottky source/drain SOI MOSFET with shallow doped extension , 2004 .

[43]  Jae-Heon Shin,et al.  A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor , 2004 .

[44]  C. Faulkner,et al.  A new route to zero-barrier metal source/drain MOSFETs , 2004, IEEE Transactions on Nanotechnology.

[45]  Bing-Yue Tsui,et al.  A novel 25-nm modified Schottky-barrier FinFET with high performance , 2004, IEEE Electron Device Letters.

[46]  S. Mantl,et al.  Nanopatterning of epitaxial CoSi2 using oxidation in a local stress field and fabrication of nanometer metal-oxide-semiconductor field-effect transistors , 2004 .

[47]  E. Dubois,et al.  Measurement of low Schottky barrier heights applied to metallic source/drain metal–oxide–semiconductor field effect transistors , 2004 .

[49]  Low temperature MOSFET technology with Schottky barrier source/drain, high-K gate dielectric and metal gate electrode , 2004 .

[50]  E. Dubois,et al.  Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate , 2004, IEEE Electron Device Letters.

[51]  M. Tao,et al.  Negative Schottky barrier between titanium and n-type Si(0 0 1) for low-resistance ohmic contacts , 2004 .

[52]  Jae-Heon Shin,et al.  Characterization of erbium-silicided Schottky diode junction , 2005 .

[53]  Tsu-Jae King,et al.  A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain , 2005, IEEE Transactions on Electron Devices.

[54]  Joel S. Emer,et al.  The soft error problem: an architectural perspective , 2005, 11th International Symposium on High-Performance Computer Architecture.

[55]  J. Koga,et al.  High-performance 50-nm-gate-length Schottky-source/drain MOSFETs with dopant-segregation junctions , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[56]  Bing-Yue Tsui,et al.  Process and characteristics of modified Schottky barrier (MSB) p-channel FinFETs , 2005, IEEE Transactions on Electron Devices.

[57]  A. Chin,et al.  Germanium pMOSFETs with Schottky-barrier germanide S/D, high-/spl kappa/ gate dielectric and metal gate , 2005, IEEE Electron Device Letters.