Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two. Part II

AbstractWe consider the Zakharov equation in space dimension two $$\left\{ {\begin{array}{*{20}c} {iu_t = - \Delta u + nu,} \\ {\frac{1}{{c_0^2 }}n_{tt} = \Delta n + \Delta \left| u \right|^2 } \\ \end{array} } \right.$$ .In the first part of the paper, we consider blow-up solutions of this equation. We prove various concentration properties of these solutions: existence, characterization of concentration mass, non existence of minimal concentration mass.In the second part, we prove instability of periodic solutions.

[1]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[2]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[3]  F. Merle,et al.  Existence of self-similar blow-up solutions for Zakhrov equation in dimension two. Part I , 1994 .

[4]  Frank Merle,et al.  On uniqueness and continuation properties after blow‐up time of self‐similar solutions of nonlinear schrödinger equation with critical exponent and critical mass , 1992 .

[5]  Hélène Added,et al.  Equations of Langmuir turbulence and nonlinear Schrödinger equation: Smoothness and approximation , 1988 .

[6]  T. Ozawa,et al.  Existence and Smoothing Effect of Solutions for the Zakharov Equations , 1992 .

[7]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[8]  Papanicolaou,et al.  Stability of isotropic self-similar dynamics for scalar-wave collapse. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[9]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[10]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[11]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[12]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[13]  F. Merle Limit behavior of saturated approximations of nonlinear Schrödinger equation , 1992 .

[14]  Michael I. Weinstein,et al.  The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence , 1986 .

[15]  Michael I. Weinstein,et al.  On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations , 1986 .

[16]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[17]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[18]  Elliott H. Lieb,et al.  On the lowest eigenvalue of the Laplacian for the intersection of two domains , 1983 .

[19]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[20]  George Papanicolaou,et al.  Singular solutions of the Zakharov equations for Langmuir turbulence , 1991 .

[21]  T. Ozawa,et al.  The nonlinear Schrödinger limit and the initial layer of the Zakharov equations , 1992, Differential and Integral Equations.

[22]  Yoshio Tsutsumi,et al.  L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity , 1990 .

[23]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[24]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .