Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data

In this paper we present an error estimate for the explicit Runge-Kutta discontinuous Galerkin method to solve a linear hyperbolic equation in one dimension with discontinuous but piecewise smooth initial data. The discontinuous finite element space is made up of piecewise polynomials of arbitrary degree $$k\ge 1$$k≥1, and time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the standard CFL temporal-spatial condition. The $$L^2(\mathbb R \backslash \mathcal R _T)$$L2(R∖RT)-norm error at the final time $$T$$T is optimal in both space and time, where $$\mathcal R _T$$RT is the pollution region due to the initial discontinuity with the width $$\mathcal O (\sqrt{T\beta }h^{1/2}\log (1/h))$$O(Tβh1/2log(1/h)). Here $$h$$h is the maximum cell length and $$\beta $$β is the flowing speed. These results are independent of the time step and hold also for the semi-discrete discontinuous Galerkin method.

[1]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[2]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[3]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[4]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  Miguel A. Fernández,et al.  Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems , 2010, SIAM J. Numer. Anal..

[7]  Chi-Wang Shu,et al.  Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension , 2010, SIAM J. Numer. Anal..

[8]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[9]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[10]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[11]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[14]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[15]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Bernardo Cockburn,et al.  Error Estimates for the Runge-Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data , 2008, SIAM J. Numer. Anal..

[18]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[19]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[20]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[21]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[22]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[23]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[24]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .