Tuning of Fractional PID Controllers by Using QFT

As it is known, a wide range of research activities deal with the application of the quantitative feedback theory (QFT) for the design of different control structures. All these approaches generally use rational controllers. On the other hand, the importance of fractional order controllers is becoming remarkable nowadays, studying aspects such as the analysis, design and synthesis of this kind of controllers. The purpose of this paper is to apply QFT for the tuning of a fractional PID controller (PIlambdaDmu) of the form KP (1 + KIs-lambda + KDsmu ), where lambda, mu are the orders of the fractional integral and derivative, respectively. The objective is to take advantage of the introduction of the fractional orders in the controller and fulfill different design specifications for a set of plants

[1]  Mark L. Nagurka,et al.  Automatic Loop Shaping of Structured Controllers Satisfying QFT Performance , 2005 .

[2]  Isaac Horowitz,et al.  Optimum loop transfer function in single-loop minimum-phase feedback systems† , 1973 .

[3]  I. Horowitz,et al.  Optimization of the loop transfer function , 1980 .

[4]  Y. Chen,et al.  ON AUTO-TUNING OF FRACTIONAL ORDER PIΛ Dμ CONTROLLERS , 2006 .

[5]  B. Lurie,et al.  Classical feedback control with MATLAB , 2000 .

[6]  Bengt Lennartson,et al.  GLOBAL CONTROLLER OPTIMIZATION USING HOROWITZ BOUNDS , 2002 .

[7]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[8]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[9]  Wen-Hua Chen,et al.  Automatic loop-shaping in QFT using genetic algorithms , 1998 .

[10]  Vicente Feliu,et al.  Optimal tunings for fractional PIDµ controllers , 2005 .

[11]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[12]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[13]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[14]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[15]  David Forsyth Thompson Optimal and sub-optimal loop shaping in quantitative feedback theory , 1990 .

[16]  Christopher V. Hollot,et al.  Automatic loop-shaping of QFT controllers via linear programming , 1999 .

[17]  Alfonso Baños,et al.  AUTOMATIC LOOP SHAPING IN QFT BY USING CRONE STRUCTURES , 2006 .

[18]  A. Baños,et al.  AUTOMATIC LOOP SHAPING IN QFT BY USING A COMPLEX FRACTIONAL ORDER TERMS CONTROLLER , 2005 .

[19]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[20]  H. W. Bode Relations between attenuation and phase in feedback amplifier design , 1940 .