Lexicographic Breadth First Search - A Survey
暂无分享,去创建一个
[1] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[2] F. Roberts. On the compatibility between a graph and a simple order , 1971 .
[3] Robert E. Tarjan,et al. Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..
[4] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[5] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[6] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[7] Robert E. Tarjan,et al. Addendum: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1985, SIAM J. Comput..
[8] Hans-Jürgen Bandelt,et al. Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.
[9] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[10] C. P. Rangan,et al. A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..
[11] S. Olariu,et al. On the semi-perfect elimination , 1988 .
[12] Rolf H. Möhring,et al. An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..
[13] Peter L. Hammer,et al. Difference graphs , 1990, Discret. Appl. Math..
[14] Klaus Simon. A New Simple Linear Algorithm to Recognize Interval Graphs , 1991, Workshop on Computational Geometry.
[15] Stephan Olariu,et al. An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..
[16] S. Olariu,et al. Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.
[17] Dieter Kratsch,et al. Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..
[18] Jeremy P. Spinrad,et al. Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.
[19] Feodor F. Dragan,et al. LexBFS-Orderings and Power of Graphs , 1996, WG.
[20] Feodor F. Dragan,et al. LexBFS-orderings and powers of chordal graphs , 1997, Discret. Math..
[21] Anne Berry,et al. Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..
[22] Stephan Olariu,et al. The ultimate interval graph recognition algorithm? , 1998, SODA '98.
[23] Feodor F. Dragan,et al. Almost Diameter of a House-hole-free Graph in Linear Time Via LexBFS , 1999, Discret. Appl. Math..
[24] Stephan Olariu,et al. Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..
[25] Ming-Tat Ko,et al. LexBFS-Ordering in Asteroidal Triple-Free Graphs , 1999, ISAAC.
[26] Laurent Viennot,et al. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..
[27] Feodor F. Dragan,et al. Diameter determination on restricted graph families , 1998, Discret. Appl. Math..
[28] Private Communications , 2001 .
[29] Martin Farach-Colton,et al. Barnacle: An Assembly Algorithm for Clone-based Sequences of Whole Genomes , 2003, Gene.
[30] Michel Habib,et al. A Simple Linear Time LexBFS Cograph Recognition Algorithm , 2003, WG.
[31] Feodor F. Dragan,et al. On linear and circular structure of (claw, net)-free graphs , 2003, Discret. Appl. Math..
[32] Feodor F. Dragan,et al. On the power of BFS to determine a graph's diameter , 2003, Networks.
[33] Pavol Hell,et al. Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..
[34] Derek G. Corneil,et al. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..
[35] Anna Bretscher. Lexbfs based recognition algorithms for cographs and related families , 2005 .
[36] Feodor F. Dragan. Estimating all pairs shortest paths in restricted graph families: a unified approach , 2005, J. Algorithms.