Lexicographic Breadth First Search - A Survey

Lexicographic Breadth First Search, introduced by Rose, Tarjan and Lueker for the recognition of chordal graphs is currently the most popular graph algorithmic search paradigm, with applications in recognition of restricted graph families, diameter approximation for restricted families and determining a dominating pair in an AT-free graph. This paper surveys this area and provides new directions for further research in the area of graph searching.

[1]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[2]  F. Roberts On the compatibility between a graph and a simple order , 1971 .

[3]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[4]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[5]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[6]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[7]  Robert E. Tarjan,et al.  Addendum: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1985, SIAM J. Comput..

[8]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[9]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[10]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[11]  S. Olariu,et al.  On the semi-perfect elimination , 1988 .

[12]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[13]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[14]  Klaus Simon A New Simple Linear Algorithm to Recognize Interval Graphs , 1991, Workshop on Computational Geometry.

[15]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[16]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[17]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..

[18]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[19]  Feodor F. Dragan,et al.  LexBFS-Orderings and Power of Graphs , 1996, WG.

[20]  Feodor F. Dragan,et al.  LexBFS-orderings and powers of chordal graphs , 1997, Discret. Math..

[21]  Anne Berry,et al.  Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..

[22]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[23]  Feodor F. Dragan,et al.  Almost Diameter of a House-hole-free Graph in Linear Time Via LexBFS , 1999, Discret. Appl. Math..

[24]  Stephan Olariu,et al.  Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs , 1995, SIAM J. Comput..

[25]  Ming-Tat Ko,et al.  LexBFS-Ordering in Asteroidal Triple-Free Graphs , 1999, ISAAC.

[26]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[27]  Feodor F. Dragan,et al.  Diameter determination on restricted graph families , 1998, Discret. Appl. Math..

[28]  Private Communications , 2001 .

[29]  Martin Farach-Colton,et al.  Barnacle: An Assembly Algorithm for Clone-based Sequences of Whole Genomes , 2003, Gene.

[30]  Michel Habib,et al.  A Simple Linear Time LexBFS Cograph Recognition Algorithm , 2003, WG.

[31]  Feodor F. Dragan,et al.  On linear and circular structure of (claw, net)-free graphs , 2003, Discret. Appl. Math..

[32]  Feodor F. Dragan,et al.  On the power of BFS to determine a graph's diameter , 2003, Networks.

[33]  Pavol Hell,et al.  Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..

[34]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[35]  Anna Bretscher Lexbfs based recognition algorithms for cographs and related families , 2005 .

[36]  Feodor F. Dragan Estimating all pairs shortest paths in restricted graph families: a unified approach , 2005, J. Algorithms.