Full Light Absorption in Single Arrays of Spherical Nanoparticles

In this paper we show that arrays of core–shell nanoparticles can function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultrabroadband, angularly selective, and all-angle absorbers. The physical principle behind these designs is explained considering balanced electric and magnetic responses of unit cells. Photovoltaic devices and thermal emitters are the two most important potential applications of the proposed designs.

[1]  H. Hofmann,et al.  Dielectric properties of silver nanoparticles coated with silica shells of different thicknesses , 2013 .

[2]  Determination of the optical constants and dielectric functions of thin film a-Si : H solar cell layers , 1999 .

[3]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[4]  R. P. Andres,et al.  Self-Assembly of Uniform Monolayer Arrays of Nanoparticles , 2003 .

[5]  R. Carminati,et al.  Near-field thermophotovoltaic energy conversion , 2006 .

[6]  Igor Semchenko,et al.  Helices of optimal shape for nonreflecting covering , 2010 .

[7]  Sergei Tretyakov,et al.  One-way transparent sheets , 2013, 1310.4586.

[8]  Jing Chen,et al.  Polarization-independent coherent perfect absorption by a dipole-like metasurface. , 2013, Optics letters.

[9]  S. Tretyakov,et al.  Synthesis of Polarization Transformers , 2013, IEEE Transactions on Antennas and Propagation.

[10]  S. Ramakrishna,et al.  Design of highly absorbing metamaterials for infrared frequencies. , 2012, Optics express.

[11]  D. Werner,et al.  Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. , 2011, ACS nano.

[12]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[13]  Dong-Hwang Chen,et al.  Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles , 2007 .

[14]  R. Marqu'es,et al.  Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials , 2011, 1106.2045.

[15]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[16]  S. A. Tretyakov,et al.  Total Absorption of Electromagnetic Waves in Ultimately Thin Layers , 2012, IEEE Transactions on Antennas and Propagation.

[17]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[18]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[19]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[20]  N. Scherer,et al.  Optical Printing of Electrodynamically Coupled Metallic Nanoparticle Arrays , 2014 .

[21]  Sergei A. Tretyakov,et al.  Tailoring Reflections From Thin Composite Metamirrors , 2014, IEEE Transactions on Antennas and Propagation.

[22]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[23]  Min Qiu,et al.  Light absorber based on nano-spheres on a substrate reflector. , 2013, Optics express.

[24]  I. V. Semchenko,et al.  Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption , 2015, 1502.06916.

[25]  Rachel Ye,et al.  Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries , 2015, Scientific Reports.

[26]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[27]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[28]  C. Simovski,et al.  Isotropic negative refractive index at near infrared , 2012 .

[29]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[30]  J. Lakowicz,et al.  Fluorescent Metal Nanoshells: Lifetime-Tunable Molecular Probes in Fluorescent Cell Imaging. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[31]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[32]  A. Alivisatos,et al.  Dielectric core-shell optical antennas for strong solar absorption enhancement. , 2012, Nano letters.

[33]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[34]  Carl Hägglund,et al.  Plasmonic Near-Field Absorbers for Ultrathin Solar Cells. , 2012, The journal of physical chemistry letters.