Hydrogenation of Si- and Be-doped InGaP

Data are presented on the hydrogenation of Be‐doped (p‐type) and Si‐doped (n‐type) In1−xGaxP epitaxial layers grown lattice matched to GaAs (x ∼ 0.5). Low‐temperature (1.7 K) photoluminescence, electrochemical carrier concentration profiling, and scanning electron microscopy are used to study the effects of hydrogenation on carrier recombination, carrier concentration, and surface morphology. Hydrogenation is found to passivate Si donors and Be acceptors and to improve photoluminescence efficiency, but causes mild surface damage. The carrier concentration following hydrogenation is found to be lowest in acceptor‐doped material.

[1]  N. Holonyak,et al.  HYDROGENATION-DEFINED STRIPE-GEOMETRY IN0.5(ALXGA1-X)0.5P QUANTUM-WELL LASERS , 1990 .

[2]  Stephen J. Pearton,et al.  Injection and drift of a positively charged hydrogen species in p‐type GaAs , 1990 .

[3]  S. Pearton,et al.  Evidence for the existence of a negatively charged hydrogen species in plasma‐treated n‐type Si , 1990 .

[4]  N. Holonyak,et al.  Hydrogenated multiple stripe high‐power long‐wavelength (1.06 μm) continuous (10–50 °C) AlyGa1−yAs‐GaAs‐InxGa1−xAs quantum well heterostructure lasers , 1990 .

[5]  N. Holonyak,et al.  Short‐wavelength (≲6400 Å) room‐temperature continuous operation of p‐n In0.5(AlxGa1−x)0.5P quantum well lasers , 1988 .

[6]  N. Holonyak,et al.  Short‐wavelength (∼625 nm) room‐temperature continuous laser operation of In0.5(AlxGa1−x)0.5P quantum well heterostructures , 1988 .

[7]  G. Stillman,et al.  High-power gain-guided coupled-stripe quantum well laser array by hydrogenation , 1988 .

[8]  S. Kawata Room-temperature continuous-wave operation of a 640 nm AlGaInP visible-light semiconductor laser , 1987 .

[9]  G. Stillman,et al.  Stripe‐geometry AlxGa1−xAs‐GaAs quantum well lasers via hydrogenation , 1987 .

[10]  Sokrates T. Pantelides,et al.  Effect of hydrogen on shallow dopants in crystalline silicon , 1987 .

[11]  M. Capizzi,et al.  Hydrogen in crystalline silicon: A deep donor? , 1987 .

[12]  C. M. Wolfe,et al.  An Improved Method for the Electrochemical C‐V Profiling of Indium Phosphide , 1986 .

[13]  Johnson,et al.  Hydrogen passivation of shallow-acceptor impurities in p-type GaAs. , 1986, Physical review. B, Condensed matter.

[14]  Stephen J. Pearton,et al.  Donor neutralization in GaAs(Si) by atomic hydrogen , 1985 .

[15]  J. Pankove,et al.  Hydrogen localization near boron in silicon , 1985 .

[16]  Akiko Gomyo,et al.  MOCVD-Grown Al0.5In0.5P–Ga0.5In0.5P Double Heterostructure Lasers Optically Pumped at 90 K , 1982 .

[17]  Haruo Nagai,et al.  Molecular beam epitaxial growth of InGaAlP on (100) GaAs , 1982 .

[18]  M. Panish Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P , 1980 .

[19]  David S. Ginley,et al.  Passivation of grain boundaries in polycrystalline silicon , 1979 .

[20]  J. Pankove,et al.  Photoluminescence of hydrogenated amorphous silicon , 1977 .

[21]  N. Holonyak,et al.  Sparked Hydrogen Treatment of Germanium Surfaces , 1955 .

[22]  N. Holonyak,et al.  Stimulated emission in In0.5(AlxGa1−x)0.5P quantum well heterostructures , 1988 .

[23]  H. Casey Heterostructure lasers , 1978 .

[24]  N. Holonyak,et al.  Exciton absorption, photoluminescence and band structure of N-Free and N-DOPED In1−xGaxP , 1976 .

[25]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .