Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

The replica method is a nonrigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated MAP estimate of an -dimensional vector “decouples” as scalar postulated MAP estimators. The result is based on applying a hardening argument to the replica analysis of postulated posterior mean estimators of Tanaka and of Guo and Verdú. The replica-symmetric postulated MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, least absolute shrinkage and selection operator (LASSO), linear estimation with thresholding, and zero norm-regularized estimation. In the case of LASSO estimation, the scalar estimator reduces to a soft-thresholding operator, and for zero norm-regularized estimation, it reduces to a hard threshold. Among other benefits, the replica method provides a computationally tractable method for precisely predicting various performance metrics including mean-squared error and sparsity pattern recovery probability.

[1]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[2]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[3]  Toshiyuki TANAKA,et al.  Erratum: A typical reconstruction limit of compressed sensing based onLp-norm minimization , 2012 .

[4]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[5]  Sundeep Rangan,et al.  On-Off Random Access Channels: A Compressed Sensing Framework , 2009, ArXiv.

[6]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[7]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing , 2009, NIPS.

[8]  R. Muller Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation , 2003 .

[9]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[10]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[11]  Martin J. Wainwright,et al.  Sharp thresholds for high-dimensional and noisy recovery of sparsity , 2006, ArXiv.

[12]  Vahid Tarokh,et al.  Shannon-Theoretic Limits on Noisy Compressive Sampling , 2007, IEEE Transactions on Information Theory.

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  V. Saligrama,et al.  Thresholded Basis Pursuit: An LP Algorithm for Achieving Optimal Support Recovery for Sparse and Approximately Sparse Signals from Noisy Random Measurements , 2008, 0809.4883.

[15]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[16]  Sundeep Rangan,et al.  Necessary and Sufficient Conditions for Sparsity Pattern Recovery , 2008, IEEE Transactions on Information Theory.

[17]  Ralf R. Müller,et al.  Random matrices, free probability and the replica method , 2004, 2004 12th European Signal Processing Conference.

[18]  A. Atkinson Subset Selection in Regression , 1992 .

[19]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[20]  Dongning Guo,et al.  Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[21]  David Tse,et al.  Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity , 1999, IEEE Trans. Inf. Theory.

[22]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[23]  Ralf R. Muller,et al.  Random matrices, free probability and the replica method , 2004, 2004 12th European Signal Processing Conference.

[24]  Chih-Chun Wang,et al.  Random Sparse Linear Systems Observed Via Arbitrary Channels: A Decoupling Principle , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  R. Monasson,et al.  Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.

[26]  Neri Merhav Physics of the Shannon limits , 2009 .

[27]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[28]  K. Adkins Theory of spin glasses , 1974 .

[29]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[30]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[31]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[32]  Bhaskar D. Rao,et al.  Comparing the Effects of Different Weight Distributions on Finding Sparse Representations , 2005, NIPS.

[33]  Vahid Tarokh,et al.  Noisy compressive sampling limits in linear and sublinear regimes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[34]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[35]  Ralf R. Müller,et al.  Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation , 2003, IEEE Trans. Signal Process..

[36]  Yoshiyuki Kabashima,et al.  Erratum: A typical reconstruction limit of compressed sensing based on Lp-norm minimization , 2009, ArXiv.

[37]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[38]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[39]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[40]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[41]  G. Reeves Sparse Signal Sampling using Noisy Linear Projections , 2008 .

[42]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[43]  Ralf R. Müller,et al.  Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking , 2010, IEEE Transactions on Information Theory.

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[45]  Venkatesh Saligrama,et al.  On sensing capacity of sensor networks for the class of linear observation, fixed SNR models , 2007, ArXiv.

[46]  V. Dotsenko An Introduction to the Theory of Spin Glasses and Neural Networks , 1995 .

[47]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[48]  Masato Okada,et al.  Approximate belief propagation, density evolution, and statistical neurodynamics for CDMA multiuser detection , 2005, IEEE Transactions on Information Theory.

[49]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[50]  Shlomo Shamai,et al.  Statistical Physics of Signal Estimation in Gaussian Noise: Theory and Examples of Phase Transitions , 2008, IEEE Transactions on Information Theory.

[51]  Andrea Montanari,et al.  Graphical Models Concepts in Compressed Sensing , 2010, Compressed Sensing.

[52]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[53]  Martin J. Wainwright,et al.  Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting , 2009, IEEE Trans. Inf. Theory.

[54]  Venkatesh Saligrama,et al.  Thresholded Basis Pursuit: LP Algorithm for Order-Wise Optimal Support Recovery for Sparse and Approximately Sparse Signals From Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[55]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[56]  Dongning Guo,et al.  A single-letter characterization of optimal noisy compressed sensing , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[57]  M. Talagrand,et al.  Spin Glasses: A Challenge for Mathematicians , 2003 .

[58]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[59]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[60]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[61]  Richard G. Baraniuk,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[62]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[63]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[64]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[65]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[66]  Venkatesh Saligrama,et al.  Information Theoretic Bounds for Compressed Sensing , 2008, IEEE Transactions on Information Theory.

[67]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[68]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[69]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[70]  A. Montanari Turbo codes: the phase transition , 2000, cond-mat/0003218.

[71]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[72]  Andrea Montanari,et al.  Analysis of Belief Propagation for Non-Linear Problems: The Example of CDMA (or: How to Prove Tanaka's Formula) , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[73]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[74]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[75]  Venkatesh Saligrama,et al.  Thresholded Basis Pursuit: Support Recovery for Sparse and Approximately Sparse Signals , 2008 .

[76]  D. Sherrington,et al.  Absence of replica symmetry breaking in a region of the phase diagram of the Ising spin glass , 2000, cond-mat/0008139.

[77]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[78]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[79]  Sundeep Rangan,et al.  Estimation with random linear mixing, belief propagation and compressed sensing , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[80]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[81]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions , 1994 .

[82]  Andrea Montanari,et al.  Estimating random variables from random sparse observations , 2007, Eur. Trans. Telecommun..

[83]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparsity Recovery in the High-Dimensional and Noisy Setting , 2007, IEEE Transactions on Information Theory.