Fluorescent protein applications in microscopy.

[1]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[2]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[4]  N. Chaffey Red fluorescent protein , 2001 .

[5]  S. Lukyanov,et al.  Kindling fluorescent proteins for precise in vivo photolabeling , 2003, Nature Biotechnology.

[6]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[7]  J. W. Hastings,et al.  Energy transfer in a bioluminescent system , 1971, Journal of cellular physiology.

[8]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[9]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[10]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[11]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[12]  D. Piston,et al.  Fluorescent protein FRET: the good, the bad and the ugly. , 2007, Trends in biochemical sciences.

[13]  T. Kerppola,et al.  Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. , 2008, Annual review of biophysics.

[14]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[15]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[16]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[17]  Y. Pu,et al.  Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. , 2001, Biochemical and biophysical research communications.

[18]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R Y Tsien,et al.  Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  O. Shimomura,et al.  Structure of the chromophore of Aequorea green fluorescent protein , 1979 .

[22]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[23]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[24]  S. Remington Fluorescent proteins: maturation, photochemistry and photophysics. , 2006, Current opinion in structural biology.

[25]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[27]  J. Thorner Laser Applications to Chemical and Environmental Analysis , 2000 .

[28]  B. Reid,et al.  Chromophore formation in green fluorescent protein. , 1997, Biochemistry.

[29]  W. M. Westler,et al.  Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. , 1993, Biochemistry.

[30]  L L Looger,et al.  Development and use of fluorescent nanosensors for metabolite imaging in living cells. , 2005, Biochemical Society transactions.

[31]  Susan S. Taylor,et al.  A genetically encoded, fluorescent indicator for cyclic AMP in living cells , 1999, Nature Cell Biology.

[32]  Michael Z. Lin,et al.  Improving the photostability of bright monomeric orange and red fluorescent proteins , 2008, Nature Methods.

[33]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[34]  C. Kaminski,et al.  Effects of fixation on cyan fluorescent protein and its fluorescence resonance energy transfer efficiency , 2004 .

[35]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Y. Umezawa,et al.  Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. , 2000, Analytical chemistry.

[37]  J. R. Waters,et al.  Quantum efficiency of Cypridina luminescence, with a note on that of Aequorea† , 1962 .

[38]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[40]  O. Shimomura,et al.  Intermolecular energy transfer in the bioluminescent system of Aequorea. , 1974, Biochemistry.

[41]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Tsien,et al.  Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. , 2000, Methods in enzymology.

[43]  R. Day,et al.  Fret imaging of pit-1 protein interactions in living cells. , 1998, Journal of biomedical optics.

[44]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[45]  J. Wiedenmann,et al.  Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family , 2006, Expert review of proteomics.

[46]  V. Verkhusha,et al.  Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light , 2006, Nature Biotechnology.

[47]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[48]  F. Tsuji,et al.  Aequorea green fluorescent protein , 1994, FEBS letters.

[49]  Roger Y. Tsien,et al.  Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Shaw,et al.  The Pleckstrin Homology Domain of Human βIΣII Spectrin Is Targeted to the Plasma Membranein Vivo , 1996 .

[51]  Atsushi Miyawaki,et al.  Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter , 2005, EMBO reports.

[52]  Douglas C. Youvan,et al.  Red-Shifted Excitation Mutants of the Green Fluorescent Protein , 1995, Bio/Technology.

[53]  Ammasi Periasamy,et al.  Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations , 2003, The Journal of cell biology.

[54]  Roger Y Tsien,et al.  Molecular biology and mutation of green fluorescent protein. , 2005, Methods of biochemical analysis.

[55]  T M Jovin,et al.  Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. , 1999, Cytometry.

[56]  R. Ranganathan,et al.  The structural basis for red fluorescence in the tetrameric GFP homolog DsRed , 2000, Nature Structural Biology.

[57]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[58]  Jim Haseloff,et al.  Mutations that suppress the thermosensitivity of green fluorescent protein , 1996, Current Biology.

[59]  H. Lodish Molecular Cell Biology , 1986 .

[60]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[61]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[62]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[63]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[65]  M. Davidson,et al.  Advances in fluorescent protein technology , 2011, Journal of Cell Science.

[66]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.