Adaptive Techniques in the Finite Element Method

In computational methods, particularly the FEM, the adaptive refinement indicates an automatic convergence process. The motivations of adaptive study for hydraulic structures elucidated in this chapter are multi-fold inclusive pre-process facilitation and software standardization, of which the latter is more attractive because it may enable engineers to control the computation error tolerance for different grades of hydraulic structures, in lieu of optional and ambiguous consideration and discussion on the adequate mesh size. Towards this target, the most prevalent adaptive refinement schemes, namely, the h-version to control the error of approximation by means of element size and the p-version to control the error of approximation through the polynomial shape functions, are elaborated in this chapter. To be more practical for hydraulic structures, the issues of viscoplastic deformation, phreatic surface, refinement strategy, equation solver, etc., are specifically handled. This chapter is closed with a variety of validation examples (underground cavern, embankment dam, concrete dam, sluice) and two engineering application cases (cut slope, landslide).

[1]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[2]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[3]  P. Carnevali,et al.  New basis functions and computational procedures for p‐version finite element analysis , 1993 .

[4]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[5]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis — part 1. Theoretical aspects , 1980 .

[6]  G. Yagawa,et al.  A numerical integration scheme for finite element method based on symbolic manipulation , 1990 .

[7]  N. Wiberg,et al.  A posteriori error estimation based on superconvergent derivatives and equilibrium , 1992 .

[8]  Walter Wunderlich,et al.  An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena , 1999 .

[9]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[10]  Wing Tat Leung,et al.  Goal-oriented adaptivity for GMsFEM , 2015, J. Comput. Appl. Math..

[11]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[12]  A. Gupta,et al.  A method of computing numerically integrated stiffness matrices , 1972 .

[13]  Klaus-Jürgen Bathe,et al.  Adaptive finite element analysis of large strain elastic response , 1993 .

[14]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[15]  Sören Östlund,et al.  FEM-remeshing technique applied to crack growth problems , 1998 .

[16]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[17]  Jérôme Carrayrou,et al.  Implementation of Richardson extrapolation in an efficient adaptive time stepping method: applications to reactive transport and unsaturated flow in porous media , 2007 .

[18]  Jacob Fish,et al.  ADAPTIVE SOLVER FOR THE p-VERSION OF FINITE ELEMENT METHOD , 1997 .

[19]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[20]  O. C. Zienkiewicz,et al.  Localization problems in plasticity using finite elements with adaptive remeshing , 1995 .

[21]  Ernst Rank,et al.  An adaptive finite element approach for the free surface seepage problem , 1986 .

[22]  Viggo Tvergaard,et al.  Analyses of Plastic Flow Localization in Metals , 1992 .

[23]  G. Touzot,et al.  Continuous Stress Fields in Finite Element Analysis , 1977 .

[24]  Nils-Erik Wiberg,et al.  Formulation and solution of hierarchical finite element equations , 1988 .

[25]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[26]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour , 1999 .

[27]  Michael Ortiz,et al.  Finite element analysis of transient strain localization phenomena in frictional solids , 1990 .

[28]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[29]  Howard E. Hinnant A fast method of numerical quadrature for p-version finite element matrices , 1993 .

[30]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[31]  Bijan Boroomand,et al.  An improved REP recovery and the effectivity robustness test , 1997 .

[32]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[33]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[34]  Z. Yosibash,et al.  THE p-VERSION OF THE FINITE ELEMENT METHOD IN INCREMENTAL ELASTO-PLASTIC ANALYSIS , 1993 .

[35]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[36]  Fei Wen Elasto-viscoplastic dynamic analysis by 3D p-version adaptive FEM for hydraulic structures , 2003 .

[37]  Gene H. Golub,et al.  Matrix computations , 1983 .

[38]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[39]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[40]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[41]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .

[42]  O. C. Zienkiewicz,et al.  Coupled problems—A simple time‐stepping procedure , 1985 .

[43]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[44]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[45]  G. Guerlement,et al.  Geometrical interpretation for error estimation in finite element analysis , 1992 .

[46]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[47]  Jintai Chung,et al.  A priori error estimator of the generalized‐α method for structural dynamics , 2003 .

[48]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[49]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[50]  A. S. Wood,et al.  On the performance of the enthalpy method in the region of a singularity , 1983 .

[51]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[52]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in flow formulation for forming problems , 1988 .

[53]  Jaime Peraire,et al.  An adaptive finite element method for transient compressible flows with moving boundaries , 1991 .

[54]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[55]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[56]  Peter Knabner,et al.  A priori error estimates for a mixed finite element discretization of the Richards’ equation , 2004, Numerische Mathematik.

[57]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[58]  O. Zienkiewicz,et al.  The hierarchical concept in finite element analysis , 1983 .

[59]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[60]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[61]  M. Papadrakakis,et al.  Solution techniques for the p‐version of the adaptive finite element method , 1994 .

[62]  O. C. Zienkiewicz,et al.  Superconvergence and the superconvergent patch recovery , 1995 .

[63]  P. G. Bergan,et al.  An automatic time-stepping algorithm for dynamic problems , 1985 .

[64]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[65]  Webe João Mansur,et al.  A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis , 2014 .

[66]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[67]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[68]  V. J. Burkley,et al.  Adaptive error analysis in seepage problems , 1991 .

[69]  Nils-Erik Wiberg,et al.  A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis , 1994 .

[70]  Graham F. Carey,et al.  A note on Richardson extrapolation as an error estimator for non‐linear reaction–diffusion problems , 1997 .

[71]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[72]  C. Pavanachand,et al.  Remeshing issues in the finite element analysis of metal forming problems , 1998 .

[73]  Bruce M. Irons,et al.  Economical computer techniques for numerically integrated finite elements , 1969 .

[74]  I. Babuska,et al.  A numerical method with a posteriori error estimation for determining the path taken by a propagating crack , 1998 .

[75]  Gregory M. Hulbert,et al.  Automatic time step control algorithm for structural dynamics , 1995 .

[76]  N. Wiberg,et al.  Error estimation and adaptivity in elastodynamics , 1992 .

[77]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[78]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[79]  Xu Qing COMPOSITE ELEMENT METHOD AND APPLICATION OF TRACE SIMULATION FOR STRAIN LOCALIZATION BANDS , 2007 .

[80]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .

[81]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[82]  B. Szabó,et al.  p‐convergent finite element approximations in fracture mechanics , 1978 .

[83]  Sunil Saigal,et al.  SINGULARp-VERSION FINITE ELEMENTS FOR STRESS INTENSITY FACTOR COMPUTATIONS , 1997 .

[84]  N. Bardell The application of symbolic computing to the hierarchical finite element method , 1989 .

[85]  J. Prévost,et al.  Automated band identification procedure for dynamic strain localization , 1996 .

[86]  P. Carnevali,et al.  Viscoelastic Damping Calculations Using a p-Type Finite Element Code , 1992 .

[87]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[88]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[89]  Yong Chen,et al.  Experiment and finite element simulation of X-type shear fractures from a crack in marble , 1987 .

[90]  Alejandro César Frery,et al.  An adaptive time integration strategy based on displacement history curvature , 2013, ArXiv.

[91]  Noboru Kikuchi,et al.  Adaptive methods to solve free boundary problems of flow through porous media , 1987 .

[92]  Ivo Babuška,et al.  On the Rates of Convergence of the Finite Element Method , 1982 .

[93]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[94]  P. Carnevali,et al.  Adaptive solution strategy for solving large systems of p‐type finite element equations , 1992 .

[95]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[96]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[97]  J. Prévost,et al.  Adaptive meshing for dynamic strain localization , 1996 .