Extending the Lifetime of Organic Flow Batteries via Redox State Management.

Redox flow batteries based on quinone-bearing aqueous electrolytes have emerged as promising systems for energy storage from intermittent renewable sources. The lifetime of these batteries is limited by quinone stability. Here, we confirm that 2,6-dihydroxyanthrahydroquinone tends to form an anthrone intermediate that is vulnerable to subsequent irreversible dimerization. We demonstrate quantitatively that this decomposition pathway is responsible for the loss of battery capacity. Computational studies indicate that the driving force for anthrone formation is greater for anthraquinones with lower reduction potentials. We show that the decomposition can be substantially mitigated. We demonstrate that conditions minimizing anthrone formation and avoiding anthrone dimerization slow the capacity loss rate by over an order of magnitude. We anticipate that this mitigation strategy readily extends to other anthraquinone-based flow batteries and is thus an important step toward realizing renewable electricity storage through long-lived organic flow batteries.

[1]  P. Beiter,et al.  2019 Cost of Wind Energy Review , 2020 .

[2]  T. L. Liu,et al.  Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery , 2018, Journal of Energy Chemistry.

[3]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[4]  Daniel P. Tabor,et al.  Theoretical and Experimental Investigation of the Stability Limits of Quinones in Aqueous Media: Implications for Organic Aqueous Redox Flow Batteries , 2018 .

[5]  T. L. Liu,et al.  Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. , 2018, Chemical communications.

[6]  David M. Reed,et al.  A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries , 2018, Nature Energy.

[7]  M. Aziz,et al.  Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods , 2018 .

[8]  S. Narayanan,et al.  Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries , 2018 .

[9]  Alán Aspuru-Guzik,et al.  Alkaline Benzoquinone Aqueous Flow Battery for Large‐Scale Storage of Electrical Energy , 2018 .

[10]  T. L. Liu,et al.  A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage , 2018 .

[11]  T. Liu,et al.  A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. , 2018, Angewandte Chemie.

[12]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[13]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[14]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[15]  A. Bentien,et al.  Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility , 2016, Scientific Reports.

[16]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[17]  U. Schubert,et al.  An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. , 2016, Angewandte Chemie.

[18]  U. Schubert,et al.  TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries , 2016 .

[19]  Michael G. Verde,et al.  A biomimetic redox flow battery based on flavin mononucleotide , 2016, Nature Communications.

[20]  Alison E Wendlandt,et al.  Quinones in Hydrogen Peroxide Synthesis and Catalytic Aerobic Oxidation Reactions , 2016 .

[21]  Michael G. Verde,et al.  The impact of pH on side reactions for aqueous redox flow batteries based on nitroxyl radical compounds , 2016 .

[22]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[23]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2016, Nature.

[24]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[25]  U. Schubert,et al.  Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries , 2015 .

[26]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[27]  M. Mench Flow Batteries I , 2015 .

[28]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[29]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[30]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[31]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[32]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[33]  Michael J. Aziz,et al.  A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metal content catalyst , 2012, 1206.2883.

[34]  Michael J. Aziz,et al.  Electricity storage for intermittent renewable sources , 2012 .

[35]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[36]  Gaoping Cao,et al.  Electrochemical Reaction Mechanism of Tiron in Acidic Aqueous Solution , 2011 .

[37]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[38]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[39]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[40]  I. A. Opeida,et al.  Kinetics of amine catalysed oxidation of anthrone by oxygen in aprotic solvents , 2010 .

[41]  Guoyuan Lu,et al.  1,1′,8,8′-Tetramethoxy-10,10′-bianthrone , 2004 .

[42]  U. Sankawa,et al.  Expression, Purification, and Characterization of AknX Anthrone Oxygenase, Which Is Involved in Aklavinone Biosynthesis in Streptomyces galilaeus , 2002, Journal of bacteriology.

[43]  H. Huang,et al.  Antipsoriatic anthrones with modulated redox properties. 3. 10-thio-substituted 1,8-dihydroxy-9(10H)-anthracenones as inhibitors of keratinocyte growth, 5-lipoxygenase, and the formation of 12(S)-HETE in mouse epidermis. , 1996, Journal of medicinal chemistry.

[44]  W. Wiegrebe,et al.  Syntheses of Anthracenones. 1. Sodium Dithionite Reduction of peri-Substituted Anthracenediones. , 1996, The Journal of organic chemistry.

[45]  W. Wiegrebe,et al.  Syntheses of Anthracenones. 2. Preparation of 1,8-Dimethoxy- (Dimethylanthralin) and 4,5-Dihydroxy-9(10H)-anthracenone (Isoanthralin): A Revision. , 1996, The Journal of organic chemistry.

[46]  P. Leukel,et al.  Antipsoriatic anthrones with modulated redox properties. 2. Novel derivatives of chrysarobin and isochrysarobin--antiproliferative activity and 5-lipoxygenase inhibition. , 1994, Journal of medicinal chemistry.

[47]  U. Sankawa,et al.  Identification of emodinanthrone oxygenase in fungus Aspergillus terreus. , 1991, Biochemistry international.

[48]  R. Dabestani,et al.  SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS–XV. ANTHRALIN and ITS OXIDATION PRODUCT 1,8‐DIHYDROXYANTHRAQUINONE , 1990, Photochemistry and photobiology.

[49]  C. Comninellis,et al.  The electrochemical reduction of anthraquinone to anthrone in concentrated H2SO4 , 1985 .

[50]  H. Kuzuhara,et al.  Oxidation of Anthracenols and Anthrone to Anthraquinones with Oxygen Mediated by Copper(II) Ion and Imidazole , 1985 .

[51]  B. Shroot,et al.  Anthralin: chemical instability and glucose-6-phosphate dehydrogenase inhibition. , 1982, The British journal of dermatology.

[52]  N. Shyamasundar,et al.  Lithium aluminum hydride reduction of peri-alkoxy-9,10-anthraquinones , 1981 .

[53]  K. Mustakallio,et al.  Free radical intermediates produced by autoxidation of 1,8-dihydroxy-9-anthrone (dithranol) in pyridine , 1978, Experientia.

[54]  W. Geiger 1,8‐Dihydroxyanthron und zwei isomere 1,1′,8,8′‐Tetrahydroxy‐10,10′‐bianthrone , 1974 .

[55]  B. L. Van Duuren,et al.  Structure and tumor-promoting activity of anthralin (1,8-dihydroxy-9-anthrone) and related compounds. , 1971, Journal of medicinal chemistry.

[56]  S. Narayanan,et al.  A New Michael-Reaction-Resistant Benzoquinone for Aqueous Organic Redox Flow Batteries , 2017 .

[57]  M. Perry,et al.  Advanced Redox-Flow Batteries: A Perspective , 2016 .

[58]  S. Narayanan,et al.  High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes , 2016 .

[59]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[60]  D. Biello Solar wars. , 2014, Scientific American.

[61]  Dong Fang,et al.  Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide , 2011 .

[62]  Gaoping Cao,et al.  A study of tiron in aqueous solutions for redox flow battery application , 2010 .

[63]  F. Beck,et al.  On the Mechanism of the Cathodic Reduction of Anthraquinone to Anthrone , 1987 .

[64]  W. Wiegrebe,et al.  Dithranol, Singlet Oxygen and Unsaturated Fatty Acids , 1986 .

[65]  A. G. Davies,et al.  Generation and E.S.R. Spectrum of the 1,8-dihydroxy-9-anthron-10-yl radical , 1983 .

[66]  J. D. Stuart,et al.  Controlled potential oxidation of anthracene in acetonitrile. II , 1968 .

[67]  F. L. Goodall,et al.  LVIII.—Reduction products of the hydroxyanthraquinones. Part V , 1924 .

[68]  A. G. Perkin,et al.  XXXVI.—Some products of the reduction of 2-hydroxyanthraquinone , 1922 .