SOMA and Strange Dynamics

This chapter discusses the basic relations between of Self-Organizing Migrating Algorithm and complex systems that are sources of the so called strange dynamics. Interaction between SOMA and complex systems is considered from two pints of views. In the first one we are focused on chaos control, synthesis and identification. In the second one is used chaotic dynamics instead of pseudorandom number generator in order to improve SOMA performance. A few experiments with fractals, that are a part of complex systems, are introduced here too. All mentioned SOMA use is fully referenced for detailed reading and further research.

[1]  Ivan Zelinka,et al.  Real-time deterministic chaos control by means of selected evolutionary techniques , 2009, Eng. Appl. Artif. Intell..

[2]  Hendrik Richter,et al.  Optimization of local control of chaos by an evolutionary algorithm , 2000 .

[3]  Ivan Zelinka,et al.  SOMA—Self-organizing Migrating Algorithm , 2016 .

[4]  Magdalena Metlicka,et al.  Ensemble centralities based adaptive Artificial Bee algorithm , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[5]  Roman Senkerik,et al.  Investigation on realtime deterministic chaos control by means of evolutionary algorithms , 2006 .

[6]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[7]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[8]  R. Gilmore,et al.  The Topology of Chaos: Alice in Stretch and Squeezeland , 2002 .

[9]  Roman Senkerik,et al.  Do Evolutionary Algorithm Dynamics Create Complex Network Structures? , 2011, Complex Syst..

[10]  Kestutis Pyragas Control of chaos via extended delay feedback , 1995 .

[11]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[12]  John R. Koza,et al.  Genetic Programming II , 1992 .

[13]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[14]  Roman Senkerik,et al.  Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures , 2011 .

[15]  Michal Pluhacek,et al.  Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem , 2014, 2014 IEEE Symposium on Differential Evolution (SDE).

[16]  Ivan Zelinka,et al.  Chaos Powered Selected Evolutionary Algorithms , 2013, NOSTRADAMUS.

[17]  Magdalena Metlicka,et al.  Chaos-driven Discrete Artificial Bee Colony , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[18]  Hendrik Richter An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions , 2002, PPSN.

[19]  Roman Senkerik,et al.  Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation , 2010, Comput. Math. Appl..

[20]  Ivan Zelinka Inverse Fractal Problem , 2005 .

[21]  Heinz G. Schuster,et al.  Handbook of Chaos Control: SCHUSTER:HDBK.CHAOS CONTR O-BK , 1999 .

[22]  Wilfrid Perruquetti,et al.  Chaos in Automatic Control , 2005 .

[23]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[24]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[25]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[26]  Wolfram Just,et al.  Theoretical and experimental aspects of chaos control by time-delayed feedback. , 2003, Chaos.

[27]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[28]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[29]  Eckmann,et al.  Fluctuations of dynamical scaling indices in nonlinear systems. , 1986, Physical review. A, General physics.

[30]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[31]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[32]  Michal Pluhacek,et al.  Investigation on evolutionary algorithms powered by nonrandom processes , 2015, Soft Computing.

[33]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[34]  Lenka Skanderova,et al.  Arnold Cat Map and Sinai as Chaotic Numbers Generators in Evolutionary Algorithms , 2014 .

[35]  F. Takens Detecting strange attractors in turbulence , 1981 .

[36]  Michal Pluhacek,et al.  Evolutionary algorithms dynamics and its hidden complex network structures , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[37]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[38]  Roman Senkerik,et al.  An investigation on evolutionary reconstruction of continuous chaotic systems , 2013, Math. Comput. Model..

[39]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[40]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[41]  Ian Stewart,et al.  Mathematics: The Lorenz attractor exists , 2000, Nature.

[42]  M. R. Jahed Motlagh,et al.  Control of spatio-temporal on–off intermittency in random driving diffusively coupled map lattices , 2009 .

[43]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[44]  Wolfram Just,et al.  Principles of Time Delayed Feedback Control , 2006 .

[45]  Roman Senkerik,et al.  Investigation on evolutionary optimization of chaos control , 2009 .

[46]  Ivan Zelinka,et al.  Evolutionary Algorithms and Chaotic Systems , 2010, Evolutionary Algorithms and Chaotic Systems.

[47]  罗晓曙,et al.  Pole placement method of controlling chaos in DC--DC buck converters , 2006 .