Acetonitrile Activation: An Effective Two-Carbon Unit for Cyclization.

A novel activation of acetonitrile for the construction of cyclobutenones by [2+2] cyclization was developed. Acetonitrile is utilized for the first time as two-carbon (C2) cyclization building block. The present protocol successfully inhibits the competitive cycloaddition with the C≡N bond of acetonitrile, but enables the in situ formation of an unsaturated carbon-carbon bond and the subsequent cycloaddition as a C2 unit. This chemistry features simple reaction conditions, high chemoselectivities, wide substrate scope, and offers a new and practical approach to cyclobutenones and cyclobuteneimines.

[1]  T. V. RajanBabu,et al.  Tandem catalysis for asymmetric coupling of ethylene and enynes to functionalized cyclobutanes , 2018, Science.

[2]  N. Jiao,et al.  Chemoselective Nitrosylation of Anilines and Alkynes via Fragmentary or Complete NO Incorporation , 2018, Chem.

[3]  Haobin Wang,et al.  Direct Aryloxylation/Alkyloxylation of Dialkyl Phosphonates for the Synthesis of Mixed Phosphonates. , 2018, Angewandte Chemie.

[4]  Dan Wang,et al.  Cobalt-catalyzed electrooxidative C-H/N-H [4+2] annulation with ethylene or ethyne , 2018, Nature Communications.

[5]  Danhua Ge,et al.  Recent Advances in Radical-Initiated C(sp3)–H Bond Oxidative Functionalization of Alkyl Nitriles , 2018 .

[6]  V. M. Dong,et al.  Transforming Olefins into γ,δ-Unsaturated Nitriles through Copper Catalysis. , 2017, Angewandte Chemie.

[7]  Jieping Zhu,et al.  Copper-Catalyzed Three-Component Carboazidation of Alkenes with Acetonitrile and Sodium Azide. , 2017, Angewandte Chemie.

[8]  Shouyun Yu,et al.  Photoredox-Catalyzed Diamidation and Oxidative Amidation of Alkenes: Solvent-Enabled Synthesis of 1,2-Diamides and α-Amino Ketones. , 2017, Organic letters.

[9]  H. Yorimitsu Cascades of Interrupted Pummerer Reaction-Sigmatropic Rearrangement. , 2017, Chemical record.

[10]  N. Maulide,et al.  Flexible and Chemoselective Oxidation of Amides to α-Keto Amides and α-Hydroxy Amides. , 2017, Journal of the American Chemical Society.

[11]  K. Hirano,et al.  Metal-Free Electrophilic Phosphination/Cyclization of Alkynes. , 2017, Journal of the American Chemical Society.

[12]  S. Luo,et al.  Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles , 2017, Nature Communications.

[13]  Yonghui Chang,et al.  Redox-Neutral α-Arylation of Alkyl Nitriles with Aryl Sulfoxides: A Rapid Electrophilic Rearrangement. , 2017, Journal of the American Chemical Society.

[14]  Guangbin Dong,et al.  Cyclobutenones and Benzocyclobutenones: Versatile Synthons in Organic Synthesis. , 2016, Chemistry.

[15]  A. McNally,et al.  Selective Functionalization of Pyridines via Heterocyclic Phosphonium Salts. , 2016, Journal of the American Chemical Society.

[16]  N. Jiao,et al.  Direct Tryptophols Synthesis from 2-Vinylanilines and Alkynes via C≡C Triple Bond Cleavage and Dioxygen Activation. , 2016, Journal of the American Chemical Society.

[17]  Yong Wang,et al.  Metal-Free [2+2+2] Cycloaddition of Ynamides and Nitriles: Mild and Regioselective Synthesis of Fully Substituted Pyridines. , 2016, Angewandte Chemie.

[18]  Stefan A. Ruider,et al.  Chemo- and Stereoselective Transition-Metal-Free Amination of Amides with Azides , 2016, Journal of the American Chemical Society.

[19]  Amandine Kolleth,et al.  Synthesis of amino-cyclobutanes via [2 + 2] cycloadditions involving keteniminium intermediates , 2016 .

[20]  T. Magauer,et al.  Trihaloethenes as versatile building blocks for organic synthesis. , 2016, Organic & biomolecular chemistry.

[21]  B. Trofimov,et al.  Toward accessible 3H-pyrroles , 2016 .

[22]  N. Maulide,et al.  Making the Least Reactive Electrophile the First in Class: Domino Electrophilic Activation of Amides. , 2016, The Journal of organic chemistry.

[23]  N. Jiao,et al.  Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of N-Nitrosoanilines and Alkynes. , 2016, Angewandte Chemie.

[24]  D. Procter,et al.  Metal-Free CH-CH-Type Cross-Coupling of Arenes and Alkynes Directed by a Multifunctional Sulfoxide Group. , 2016, Journal of the American Chemical Society.

[25]  N. Jiao,et al.  Rh-Catalyzed Construction of Quinolin-2(1H)-ones via C-H Bond Activation of Simple Anilines with CO and Alkynes. , 2015, Journal of the American Chemical Society.

[26]  N. Cramer,et al.  Catalytic C-C Bond Activations via Oxidative Addition to Transition Metals. , 2015, Chemical reviews.

[27]  N. Jiao,et al.  Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. , 2014, Chemical reviews.

[28]  B. König,et al.  Die photoredoxkatalysierte Meerwein-Addition: intermolekulare Aminoarylierung von Alkenen† , 2014 .

[29]  Durga Prasad Hari,et al.  The photoredox-catalyzed Meerwein addition reaction: intermolecular amino-arylation of alkenes. , 2014, Angewandte Chemie.

[30]  Vaneet Saini,et al.  Übergangsmetallkatalysierte C‐C‐Kupplungen mit Ethylen im Labormaßstab , 2013 .

[31]  B. Stokes,et al.  Transition-metal-catalyzed laboratory-scale carbon-carbon bond-forming reactions of ethylene. , 2013, Angewandte Chemie.

[32]  Yong Wang,et al.  Copper(II)-catalyzed three-component cascade annulation of diaryliodoniums, nitriles, and alkynes: a regioselective synthesis of multiply substituted quinolines. , 2013, Angewandte Chemie.

[33]  Yong Wang,et al.  Copper(II)-catalyzed three-component cascade annulation of diaryliodoniums, nitriles, and alkynes: a regioselective synthesis of multiply substituted quinolines. , 2013, Angewandte Chemie.

[34]  Rúben Martín,et al.  Recent Advances in the Synthesis and Application of Benzocyclobutenones and Related Compounds , 2013 .

[35]  H. Neumann,et al.  Synthesis of heterocycles via palladium-catalyzed carbonylations. , 2013, Chemical reviews.

[36]  N. Jiao,et al.  Synthesis of oxazoles through copper-mediated aerobic oxidative dehydrogenative annulation and oxygenation of aldehydes and amines. , 2012, Angewandte Chemie.

[37]  Pei‐Qiang Huang,et al.  Direct transformation of secondary amides into secondary amines: triflic anhydride activated reductive alkylation. , 2012, Angewandte Chemie.

[38]  R. Takeuchi,et al.  Iridium-catalyzed [2 + 2 + 2] cycloaddition of α,ω-diynes with nitriles. , 2012, Journal of the American Chemical Society.

[39]  N. Jiao,et al.  Implanting Nitrogen into Hydrocarbon Molecules Through C—H and C—C Bond Cleavages: A Direct Approach to Tetrazoles. , 2012 .

[40]  A. Charette,et al.  Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. , 2012, Nature chemistry.

[41]  P. Baran,et al.  Intermolecular Ritter-type C-H amination of unactivated sp3 carbons. , 2012, Journal of the American Chemical Society.

[42]  N. Jiao,et al.  Iron-catalyzed C-H and C-C bond cleavage: a direct approach to amides from simple hydrocarbons. , 2011, Angewandte Chemie.

[43]  N. Jiao,et al.  Implanting nitrogen into hydrocarbon molecules through C-H and C-C bond cleavages: a direct approach to tetrazoles. , 2011, Angewandte Chemie.

[44]  Fan Wu,et al.  A simple and highly efficient iron catalyst for a [2+2+2] cycloaddition to form pyridines. , 2011, Angewandte Chemie.

[45]  G. Domínguez,et al.  Recent advances in [2+2+2] cycloaddition reactions. , 2011, Chemical Society reviews.

[46]  Chaoqun Li,et al.  An efficient [2 + 2 + 1] synthesis of 2,5-disubstituted oxazoles via gold-catalyzed intermolecular alkyne oxidation. , 2011, Journal of the American Chemical Society.

[47]  A. Charette,et al.  Controlled and chemoselective reduction of secondary amides. , 2010, Journal of the American Chemical Society.

[48]  N. Mani,et al.  An efficient intramolecular 1,3-dipolar cycloaddition involving 2-(1,2-dichlorovinyloxy)aryldiazomethanes: a one-pot synthesis of benzofuropyrazoles from salicylaldehydes. , 2009, The Journal of organic chemistry.

[49]  M. D. Hill,et al.  Direct synthesis of pyridine derivatives. , 2007, Journal of the American Chemical Society.

[50]  B. Heller,et al.  The fascinating construction of pyridine ring systems by transition metal-catalysed [2 + 2 + 2] cycloaddition reactions. , 2007, Chemical Society reviews.

[51]  A. Zambon,et al.  Chiral polycyclic ketones via desymmetrization of dihaloolefins. , 2007, The Journal of organic chemistry.

[52]  M. D. Hill,et al.  Synthesis of substituted pyridine derivatives via the ruthenium-catalyzed cycloisomerization of 3-azadienynes. , 2006, Journal of the American Chemical Society.

[53]  J. Blazejewski,et al.  Straightforward one-pot synthesis of trifluoromethyl sulfonium salts. , 2006, Angewandte Chemie.

[54]  T. Kondo,et al.  Ruthenium-catalyzed Reconstructive Synthesis of Functional Organic Molecules via Cleavage of Carbon–Carbon Bonds , 2005 .

[55]  J. Louie,et al.  A nickel-catalyzed route to pyridines. , 2005, Journal of the American Chemical Society.

[56]  Yuchen Tang,et al.  Remarkably facile hexatriene electrocyclizations as a route to functionalized cyclohexenones via ring expansion of cyclobutenones. , 2004, Journal of the American Chemical Society.

[57]  Jesús A. Varela,et al.  Construction of pyridine rings by metal-mediated [2 + 2 + 2] cycloaddition. , 2003, Chemical reviews.

[58]  R. Powell,et al.  Cycloaddition reactions of furan derivatives with trifluoroethene , 2000 .

[59]  V. Nenajdenko,et al.  Chemical Transformations Induced by Triflic Anhydride , 2000 .

[60]  Y. Tobe,et al.  [2 + 2] Cycloreversion of [4.3.2]Propella-1,3,11-trienes: An Approach to Cyclo[n]carbons from Propellane-Annelated Dehydro[n]annulenes , 2000 .

[61]  D. Milstein,et al.  Metallinsertion in C-C-Bindungen in Lösung , 1999 .

[62]  D. Milstein,et al.  Metal Insertion into C-C Bonds in Solution. , 1999, Angewandte Chemie.

[63]  W. Jones The fall of the C-C bond , 1993, Nature.

[64]  H. R. Sonawane,et al.  Light-mediated cyanomethylation of cycloalkenes with acetonitrile , 1990 .

[65]  Beat Ernst,et al.  Cyclobutanones and Cyclobutenones in Nature and in Synthesis [New Synthetic Methods(71)] , 1988 .

[66]  D. Belluŝ,et al.  Cyclobutanone und Cyclobutenone in der Natur und in der Synthese , 1988 .

[67]  G. Lal,et al.  Cycloaddition reactions of silyloxyacetylenes with ketenes: synthesis of cyclobutenones, resorcinols, and .DELTA.-6-tetrahydrocannabinol , 1988 .

[68]  L. Ghosez,et al.  Vicinal alkylation of alkynes. A short route toward Δα,β butenolides, furans and cyclopentenones. , 1984 .

[69]  R. Danheiser,et al.  A [4 + 4] annulation approach to eight-membered carbocyclic compounds , 1982 .

[70]  J. Falmagne,et al.  Cyclobutanone and Cyclobutenone Derivatives By Reaction of Tertiary Amides With Alkenes Or Alkynes , 1981 .

[71]  L. Ghosez,et al.  Cyclobutanon‐ und Cyclobutenon‐Derivate durch Reaktion tertiärer Amide mit Alkenen bzw. Alkinen , 1981 .

[72]  T. Marks,et al.  Silver(I) Photocatalyzed Addition of Acetonitrile to Norbornene , 1981 .

[73]  R. Schrock,et al.  Preparation and characterization of tantalum(III) olefin complexes and tantalum(V) metallacyclopentane complexes made from acyclic .alpha. olefins , 1979 .

[74]  K. Vollhardt Transition-metal-catalyzed acetylene cyclizations in organic synthesis , 1977 .

[75]  J. Ritter,et al.  A new reaction of nitriles; amides from alkenes and mononitriles. , 1948, Journal of the American Chemical Society.

[76]  J. Ritter,et al.  A new reaction of nitriles; synthesis of t-carbinamines. , 1948, Journal of the American Chemical Society.