Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter

The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, ‘‘trial-and-error’’ recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007–2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.

[1]  P. Lemke,et al.  On the Required Accuracy of Atmospheric Forcing Fields for Driving Dynamic‐Thermodynamic Sea Ice Models , 2013 .

[2]  Claudia Golz,et al.  Observed historical discharge data from major rivers for climate model validation , 2000 .

[3]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[4]  Hugues Goosse,et al.  Importance of ice-ocean interactions for the global ocean circulation: A model study , 1999 .

[5]  Michael Steele,et al.  The force balance of sea ice in a numerical model , 1997 .

[6]  P. Lemke,et al.  Effects of Stochastic Ice Strength Perturbation on Arctic Finite Element Sea Ice Modeling , 2013 .

[7]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[8]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[9]  I. Keghouche Modeling the dynamics and drift of icebergs in the Barents Sea , 2010 .

[10]  A. Baumgartner,et al.  The world water balance: Mean annual global, continental and maritime precipitation, evaporation and run-off , 1975 .

[11]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[12]  P. Lemke,et al.  Sensitivity studies with a sea ice‐mixed layer‐pycnocline model in the Weddell Sea , 1990 .

[13]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[14]  R. Kwok,et al.  Arctic ice-ocean simulation with optimized model parameters: Approach and assessment , 2011 .

[15]  W. Brechner Owens,et al.  Coupled sea ice-mixed layer simulations for the southern ocean , 1990 .

[16]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[17]  A. Keen,et al.  A sensitivity study of the sea ice simulation in the global coupled climate model, HadGEM3 , 2014 .

[18]  T. Fichefet,et al.  Better constraints on the sea-ice state using global sea-ice data assimilation , 2012 .

[19]  T. Fichefet,et al.  On the influence of model physics on simulations of Arctic and Antarctic sea ice , 2011 .

[20]  Sylvain Bouillon,et al.  Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation , 2009 .

[21]  Sylvain Bouillon,et al.  A new modeling framework for sea-ice mechanics based on elasto-brittle rheology , 2011, Annals of Glaciology.

[22]  D. Notz Challenges in simulating sea ice in Earth System Models , 2012 .

[23]  R. Gerdes,et al.  Sensitivities and uncertainties in a coupled regional atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice , 2007 .

[24]  Natalia Galin,et al.  Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data , 2013 .

[25]  J. Comiso,et al.  Trends in the sea ice cover using enhanced and compatible AMSR‐E, SSM/I, and SMMR data , 2008 .

[26]  W. Lipscomb,et al.  Sensitivity analysis and parameter tuning scheme for global sea-ice modeling , 2006 .

[27]  Thomas Lavergne,et al.  Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic , 2010 .

[28]  Frank Kauker,et al.  A comparison between gradient descent and stochastic approaches for parameter optimization of a sea ice model , 2013 .

[29]  Julia C. Hargreaves,et al.  Parameter estimation in an atmospheric GCM using the Ensemble , 2005 .

[30]  Thomas Lavergne,et al.  A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation , 2013 .

[31]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[32]  W. Lipscomb,et al.  Sea-ice models for climate study: retrospective and new directions , 2010, Journal of Glaciology.

[33]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter : an alternative to ensemble square root filters , 2008 .

[34]  D. Bi,et al.  A sea-ice sensitivity study with a global ocean-ice model , 2012 .

[35]  Daniel L. Feltham,et al.  Sea Ice Rheology , 2008 .

[36]  D. Marsan,et al.  Arctic sea ice velocity field: General circulation and turbulent‐like fluctuations , 2009 .

[37]  Jean-Marc Molines,et al.  Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation , 2009 .

[38]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[39]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[40]  Marc Bocquet,et al.  Ensemble Kalman filtering without the intrinsic need for inflation , 2011 .

[41]  R. Döscher,et al.  A Method for Improved Representation of Dense Water Spreading over Topography in Geopotential-Coordinate Models , 1997 .

[42]  Diffusion of sea ice , 1986 .

[43]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[44]  Seymour W. Laxon,et al.  Optimization of a Sea Ice Model Using Basinwide Observations of Arctic Sea Ice Thickness, Extent, and Velocity , 2006 .

[45]  A. Stössel Sensitivity of Southern Ocean sea-ice simulations to different atmospheric forcing algorithms , 1992 .

[46]  Geir Evensen,et al.  Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model , 2007 .

[47]  Matthieu Chevallier,et al.  The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic Approach with a Coupled GCM , 2012 .

[48]  Markus Harder,et al.  Sea ice dynamics in the Weddell Sea simulated with an optimized model , 1999 .

[49]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[50]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[51]  M. Maqueda,et al.  An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids , 2009 .

[52]  J. Tison,et al.  Role of sea ice in global biogeochemical cycles: emerging views and challenges , 2013 .

[53]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[54]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[55]  Ann Henderson-Sellers,et al.  The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization , 1985 .

[56]  Geir Evensen,et al.  Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter , 2003 .

[57]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters , 2008 .

[58]  Marc Bocquet,et al.  Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems , 2012 .