Fractal and Polar Microstrip Antennas and Arrays for Wireless Communications

This chapter presents the research done by authors in recent years on microstrip antennas and their applications in wireless sensors network. The subject is delimited to the study of conventional microstrip antennas, from which antennas with fractal and polar shapes are proposed. A detailed description of the antenna design methodology is presented for some prototypes of microstrip antennas manufactured with different dielectric substrates. Analysis of the proposed antennas has been done through computational simulation of full-wave methods. Experimental characterization of antennas and dielectric materials has been performed with the use of a vector network analyzer. The results obtained for the resonant and radiation parameters of the antennas are presented. Computer-aided design (CAD) of microstrip antennas and arrays using fractal and polar geometrical transformations results in a wide class of antenna elements with desirable and unique characteristics, such as compact, exclusive, and esthetic antenna design for multiband or broadband frequency operation with stable radiation pattern.

[1]  Thomas A. Milligan,et al.  Modern Antenna Design: Milligan/Modern Antenna Design , 2005 .

[2]  Paulo H da F Silva,et al.  Using a multilayer perceptrons for accurate modeling of quasi-fractal patch antennas , 2010, 2010 International Workshop on Antenna Technology (iWAT).

[3]  R. Garg,et al.  Microstrip Antenna Design Handbook , 2000 .

[4]  Antonio Luiz P. S. Campos,et al.  Overall size antenna reduction using fractal elements , 2009 .

[5]  Robert LeMoyne,et al.  Wearable and Wireless Systems for Healthcare I - Gait and Reflex Response Quantification , 2018 .

[6]  Jing Xu,et al.  5G Wireless Systems: Simulation and Evaluation Techniques , 2017 .

[7]  Alexandre Jean Rene Serres,et al.  Wearable textile bioinspired antenna for 2G, 3G, and 4G systems , 2016 .

[8]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[9]  T. Milligan Modern Antenna Design , 1985 .

[10]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[11]  Yang Yang,et al.  5G Wireless Systems , 2018 .

[12]  Alexandre Jean Rene Serres,et al.  Bio‐inspired design of directional leaf‐shaped printed monopole antennas for 4G 700 MHz band , 2016 .

[13]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[14]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[15]  N. Cohen,et al.  Fractal antenna applications in wireless telecommunications , 1997, Professional Program Proceedings. Electronic Industries Forum of New England.

[16]  Paulo Henrique da Fonseca Silva,et al.  Optimization of FSS with Sierpinski island fractal elements using population‐based search algorithms and MLP neural network , 2014 .

[17]  Raed A. Abd-Alhameed,et al.  Antenna Fundamentals for Legacy Mobile Applications and Beyond , 2018 .

[18]  G. Kumar,et al.  Broadband microstrip antennas , 2002, Microstrip and Printed Antenna Design.

[19]  J. Mishra,et al.  L-System Fractals , 2007 .

[20]  A. Campos,et al.  Small‐size quasi‐fractal patch antenna using the Minkowski curve , 2010 .

[21]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method: Sullivan/Electromagnetic Simulation Using the FDTD Method , 2013 .

[22]  D. M. Pozar,et al.  Microstrip antennas , 1995, Proc. IEEE.

[23]  H. Kassem,et al.  Characterization Techniques for Materials’ Properties Measurement , 2010 .

[24]  R. Munson Conformal microstrip antennas and microstrip phased arrays , 1974 .

[25]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[26]  Adaildo Gomes D'Assunção,et al.  A new configuration of planar monopole quasi-fractal antenna for wireless communications , 2010, Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation.

[27]  Jefferson C. e Silva,et al.  UWB cotton leaf design microstrip-fed printed monopole antenna , 2015, 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).

[28]  Chia-Chin Chong,et al.  Potential of UWB Technology for the Next Generation Wireless Communications , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[29]  Paulo Henrique da Fonseca Silva,et al.  Optimal design of frequency selective surfaces with fractal motifs , 2014 .

[30]  Alexandre Jean Rene Serres,et al.  Bio-inspired antenna for UWB systems , 2016, 2016 1st International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT).

[31]  Raimundo C. S. Freire,et al.  Bio-Inspired Wearable Antennas , 2018, Wearable Technologies.

[32]  Zhi Ning Chen,et al.  Broadband Planar Antennas: Design and Applications , 2006 .

[33]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[34]  Annett Baier,et al.  Electromagnetic Simulation Using The Fdtd Method , 2016 .

[35]  Paulo Henrique da Fonseca Silva,et al.  Quasi-fractal Koch triangular antenna , 2009, 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).

[36]  André Perez Wi-Fi Integration to the 4G Mobile Network , 2018 .

[37]  G. Thiele,et al.  Antenna theory and design , 1981 .

[38]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .