Development of a soot particle model with PAHs as precursors through simulations and experiments

[1]  Zhen Huang,et al.  Particle size distribution of nascent soot in lightly and heavily sooting premixed ethylene flames , 2016 .

[2]  Yanzhao An,et al.  An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline , 2016 .

[3]  Bing Li,et al.  Development of a PAH (polycyclic aromatic hydrocarbon) formation model for gasoline surrogates and its application for GDI (gasoline direct injection) engine CFD (computational fluid dynamics) simulation , 2016 .

[4]  Zhen Huang,et al.  Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame , 2015 .

[5]  E. Ranzi,et al.  Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame , 2015 .

[6]  Yanzhao An,et al.  Kinetic modeling of polycyclic aromatic hydrocarbons formation process for gasoline surrogate fuels , 2015 .

[7]  H. Vieker,et al.  Morphology of nascent soot in ethylene flames , 2015 .

[8]  Hai Wang,et al.  Kinetics of nascent soot oxidation by molecular oxygen in a flow reactor , 2015 .

[9]  Caj Niels Leermakers,et al.  In-cylinder soot precursor growth in a low-temperature combustion diesel engine: Laser-induced fluorescence of polycyclic aromatic hydrocarbons , 2015 .

[10]  Vladimir A. Alekseev,et al.  Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene , 2013 .

[11]  M. Jia,et al.  Development of a Phenomenological Soot Model Coupled with a Skeletal PAH Mechanism for Practical Engine Simulation , 2013 .

[12]  H. Ng,et al.  Simulation of temporal and spatial soot evolution in an automotive diesel engine using the Moss–Brookes soot model , 2012 .

[13]  Bianca Maria Vaglieco,et al.  Investigating the origin of nuclei particles in GDI engine exhausts , 2012 .

[14]  A. Amer,et al.  A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons , 2012 .

[15]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[16]  D. Wales,et al.  Modelling the internal structure of nascent soot particles , 2010 .

[17]  Benjamín Pla,et al.  Effects of the Intake Charge Distribution in HSDI Engines , 2010 .

[18]  R. Head,et al.  HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model , 2009 .

[19]  Markus Kraft,et al.  A statistical approach to develop a detailed soot growth model using PAH characteristics , 2009 .

[20]  T. Tsurushima A new skeletal PRF kinetic model for HCCI combustion , 2009 .

[21]  Liisa Pirjola,et al.  Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. , 2007, Environmental science & technology.

[22]  R. Hanson,et al.  Investigation of the reaction of toluene with molecular oxygen in shock-heated gases , 2006 .

[23]  M. Choi,et al.  Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates , 2005 .

[24]  F. Battin‐Leclerc,et al.  Experimental and modeling study of the oxidation of toluene , 2005 .

[25]  Ronald K. Hanson,et al.  Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures , 2004 .

[26]  Valeri Golovitchev,et al.  A phenomenological model for the prediction of soot formation in diesel spray combustion , 2004 .

[27]  Stephen Ciatti,et al.  Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates , 2003 .

[28]  F. Inal,et al.  Effects of equivalence ratio on species and soot concentrations in premixed n-heptane flames , 2002 .

[29]  M. Frenklach Method of moments with interpolative closure , 2002 .

[30]  A. E. Bakali,et al.  Experimental Study of 1 Atmosphere, Rich, Premixed n-heptane and iso-octane Flames , 1998 .

[31]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[32]  Kazuhiro Akihama,et al.  Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell , 1997 .

[33]  M. Frenklach,et al.  Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar , 1995 .

[34]  Michael Frenklach,et al.  Detailed Mechanism and Modeling of Soot Particle Formation , 1994 .

[35]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[36]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .