Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse Krivine-Stengle Representations

Floating point error is a notable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary for the validation of critical software. This problem of computing rigorous upper bounds is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization, to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKriSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.

[1]  Ganesh Gopalakrishnan,et al.  Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions , 2015, FM.

[2]  César A. Muñoz,et al.  Bounding the Range of a Rational Function over a box , 2012, Reliab. Comput..

[3]  Victor Magron,et al.  Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse Krivine-Stengle Representations , 2018, IEEE Transactions on Computers.

[4]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[5]  Richard Kreckel,et al.  Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..

[6]  George A. Constantinides,et al.  Automated Precision Analysis: A Polynomial Algebraic Approach , 2010, 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines.

[7]  Eric Goubault,et al.  Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software , 2009, FMICS.

[8]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[9]  Jean B. Lasserre,et al.  A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..

[10]  Guillaume Melquiond,et al.  Certification of bounds on expressions involving rounded operators , 2007, TOMS.

[11]  Jürgen Garloff Convergent Bounds for the Range of Multivariate Polynomials , 1985, Interval Mathematics.

[12]  Bernard Mourrain,et al.  A Subdivision Approach to Planar Semi-algebraic Sets , 2010, GMP.

[13]  Jürgen Garloff,et al.  Rigorous Affine Lower Bound Functions for Multivariate Polynomials and Their Use in Global Optimisation , 2008 .

[14]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[15]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[16]  Thomas C. Hales,et al.  Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations , 2013, NASA Formal Methods.

[17]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[18]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[19]  Viktor Kuncak,et al.  Towards a Compiler for Reals , 2014, ACM Trans. Program. Lang. Syst..

[20]  Thao Dang,et al.  Parameter synthesis for polynomial biological models , 2014, HSCC.

[21]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[22]  Etienne de Klerk,et al.  Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube , 2010, SIAM J. Optim..

[23]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[24]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[25]  David Grimm,et al.  A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.

[26]  César A. Muñoz,et al.  Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.

[27]  Andrew P. Smith Enclosure Methods for Systems of Polynomial Equations and Inequalities , 2012 .

[28]  Bernhard Schölkopf,et al.  A Tutorial Introduction , 2001 .

[29]  George A. Constantinides,et al.  Certified Roundoff Error Bounds Using Semidefinite Programming , 2015, ACM Trans. Math. Softw..

[30]  Jean B. Lasserre,et al.  Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity , 2016, Mathematical Programming Computation.