Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse Krivine-Stengle Representations
暂无分享,去创建一个
[1] Ganesh Gopalakrishnan,et al. Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions , 2015, FM.
[2] César A. Muñoz,et al. Bounding the Range of a Rational Function over a box , 2012, Reliab. Comput..
[3] Victor Magron,et al. Certified Roundoff Error Bounds Using Bernstein Expansions and Sparse Krivine-Stengle Representations , 2018, IEEE Transactions on Computers.
[4] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[5] Richard Kreckel,et al. Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..
[6] George A. Constantinides,et al. Automated Precision Analysis: A Polynomial Algebraic Approach , 2010, 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines.
[7] Eric Goubault,et al. Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software , 2009, FMICS.
[8] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[9] Jean B. Lasserre,et al. A bounded degree SOS hierarchy for polynomial optimization , 2015, EURO J. Comput. Optim..
[10] Guillaume Melquiond,et al. Certification of bounds on expressions involving rounded operators , 2007, TOMS.
[11] Jürgen Garloff. Convergent Bounds for the Range of Multivariate Polynomials , 1985, Interval Mathematics.
[12] Bernard Mourrain,et al. A Subdivision Approach to Planar Semi-algebraic Sets , 2010, GMP.
[13] Jürgen Garloff,et al. Rigorous Affine Lower Bound Functions for Multivariate Polynomials and Their Use in Global Optimisation , 2008 .
[14] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[15] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .
[16] Thomas C. Hales,et al. Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations , 2013, NASA Formal Methods.
[17] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[18] John Harrison,et al. HOL Light: A Tutorial Introduction , 1996, FMCAD.
[19] Viktor Kuncak,et al. Towards a Compiler for Reals , 2014, ACM Trans. Program. Lang. Syst..
[20] Thao Dang,et al. Parameter synthesis for polynomial biological models , 2014, HSCC.
[21] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[22] Etienne de Klerk,et al. Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube , 2010, SIAM J. Optim..
[23] J. Krivine,et al. Anneaux préordonnés , 1964 .
[24] Bernard Mourrain,et al. Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..
[25] David Grimm,et al. A note on the representation of positive polynomials with structured sparsity , 2006, math/0611498.
[26] César A. Muñoz,et al. Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.
[27] Andrew P. Smith. Enclosure Methods for Systems of Polynomial Equations and Inequalities , 2012 .
[28] Bernhard Schölkopf,et al. A Tutorial Introduction , 2001 .
[29] George A. Constantinides,et al. Certified Roundoff Error Bounds Using Semidefinite Programming , 2015, ACM Trans. Math. Softw..
[30] Jean B. Lasserre,et al. Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity , 2016, Mathematical Programming Computation.