THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE

The structure and dynamics of the M87 jet from sub-milliarcsec to arcsecond scales are continuously examined. We analyzed the Very Long Baseline Array archival data taken at 43 and 86 GHz to measure the size of very long baseline interferometry (VLBI) cores. Millimeter/sub-millimeter VLBI cores are considered as innermost jet emissions, which has been originally suggested by Blandford & Königl. Those components fairly follow an extrapolated parabolic streamline in our previous study so that the jet has a single power-law structure with nearly 5 orders of magnitude in the distance starting from the vicinity of the supermassive black hole (SMBH), less than 10 Schwarzschild radius (rs). We further inspect the jet parabolic structure as a counterpart of the magnetohydrodynamic (MHD) nozzle in order to identify the property of a bulk acceleration. We interpret that the parabolic jet consists of Poynting-flux dominated flows, powered by large-amplitude, nonlinear torsional Alfvén waves. We examine the non-relativistic MHD nozzle equation in a parabolic shape. The nature of trans-fast magnetosonic flow is similar to the one of transonic solution of Parker's hydrodynamic solar wind; the jet becomes super-escape as well as super-fast magnetosonic at around ∼103 rs, while the upstream trans-Alfvénic flow speed increases linearly as a function of the distance at ∼102–103 rs. We here point out that this is the first evidence to identify these features in astrophysical jets. We propose that the M87 jet is magnetically accelerated, but thermally confined by the stratified interstellar medium inside the sphere of gravitational influence of the SMBH potential, which may be a norm in active galactic nucleus jets.

[1]  D. Meier,et al.  Linking accretion flow and particle acceleration in jets – I. New relativistic magnetohydrodynamical jet solutions including gravity , 2012, 1209.4920.

[2]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[3]  M. Begelman,et al.  Magnetic domination of recollimation boundary layers in relativistic jets , 2012, 1208.1261.

[4]  Maochun Wu,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. II. NATURE, ORIGIN, AND PROPERTIES OF OUTFLOWS AND THEIR POSSIBLE OBSERVATIONAL APPLICATIONS , 2012, 1206.4173.

[5]  Maochun Wu,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. I. A LARGE RADIAL DYNAMICAL RANGE AND THE DENSITY PROFILE OF ACCRETION FLOW , 2012, 1206.4157.

[6]  F. Mottez,et al.  Non-linear simple relativistic Alfvén waves in astrophysical plasmas , 2012 .

[7]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[8]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[9]  Tuscaloosa,et al.  RESOLVING THE BONDI ACCRETION FLOW TOWARD THE SUPERMASSIVE BLACK HOLE OF NGC 3115 WITH CHANDRA , 2011, 1106.3069.

[10]  Cambridge,et al.  Bondi flow from a slowly rotating hot atmosphere , 2011, 1105.0594.

[11]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[12]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[13]  S. Komissarov Magnetic acceleration of relativistic jets. , 2011 .

[14]  D. Meier,et al.  DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS , 2010, 1009.3031.

[15]  Y. Lyubarsky Transformation of the Poynting flux into kinetic energy in relativistic jets , 2009, 0909.4819.

[16]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[17]  K. Tsinganos,et al.  SYNTHETIC SYNCHROTRON EMISSION MAPS FROM MHD MODELS FOR THE JET OF M87 , 2009, 0901.2634.

[18]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[19]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[20]  Stanford,et al.  Hot Self-Similar Relativistic Magnetohydrodynamic Flows , 2008, 0801.1120.

[21]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[22]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[23]  R. Walker,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007, astro-ph/0701511.

[24]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[25]  Shengtai Li,et al.  Structure of Magnetic Tower Jets in Stratified Atmospheres , 2006, astro-ph/0608326.

[26]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[27]  W. Sparks,et al.  The Outburst of HST-1 in the M87 Jet , 2005, astro-ph/0511755.

[28]  K. Shibata,et al.  Three-dimensional Magnetohydrodynamic Simulations of Jets from Accretion Disks , 2005, astro-ph/0508388.

[29]  J. Tonry,et al.  The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation , 2005, astro-ph/0508219.

[30]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[31]  Eric S. Perlman,et al.  The X-Ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation , 2005, astro-ph/0503024.

[32]  N. Vlahakis Ideal Magnetohydrodynamic Solution to the σ Problem in Crab-like Pulsar Winds and General Asymptotic Analysis of Magnetized Outflows , 2003, astro-ph/0309292.

[33]  R. Blandford,et al.  Two‐dimensional adiabatic flows on to a black hole – I. Fluid accretion , 2003, astro-ph/0306184.

[34]  N. Vlahakis,et al.  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[35]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[36]  D. Meier,et al.  Poynting Flux-dominated Jets in Decreasing-Density Atmospheres. I. The Nonrelativistic Current-driven Kink Instability and the Formation of “Wiggled” Structures , 2004, astro-ph/0406405.

[37]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[38]  A. Wilson,et al.  Submitted to the Astrophysical Journal Chandra X-ray Imaging and Spectroscopy of the M87 Jet and Nucleus , 2002 .

[39]  D. Harris,et al.  A High-Resolution X-Ray Image of the Jet in M87 , 2001, astro-ph/0109160.

[40]  David L. Meier,et al.  The Association of Jet Production with Geometrically Thick Accretion Flows and Black Hole Rotation , 2000, astro-ph/0010231.

[41]  K. Tsinganos,et al.  A disc-wind model with correct crossing of all magnetohydrodynamic critical surfaces , 2000, astro-ph/0005582.

[42]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[43]  R. Narayan,et al.  Self-similar Accretion Flows with Convection , 1999, astro-ph/9912449.

[44]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[45]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[46]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[47]  David L. Meier,et al.  A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division , 1998, astro-ph/9810352.

[48]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[49]  Ryoji Matsumoto,et al.  Magnetically Driven Jets from Accretion Disks. III. 2.5-dimensional Nonsteady Simulations for Thick Disk Case , 1998 .

[50]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[51]  K. Liffman,et al.  Magnetosonic jet flow , 1997 .

[52]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[53]  R. Pudritz,et al.  Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models , 1997 .

[54]  A. V. Koldoba,et al.  Formation of Stationary Magnetohydrodynamic Outflows from a Disk by Time-dependent Simulations , 1997 .

[55]  Kazunari Shibata,et al.  Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects , 1997 .

[56]  J. Contopoulos A Simple Type of Magnetically Driven Jets: an Astrophysical Plasma Gun , 1995 .

[57]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[58]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[59]  Zhi-Yun Li Electromagnetically driven relativistic jets - A class of self-consistent numerical solutions , 1993 .

[60]  T. Chiueh,et al.  Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions , 1992 .

[61]  R. Pudritz,et al.  Hydromagnetic disk winds in young stellar objects and active galactic nuclei , 1992 .

[62]  H. Berk,et al.  Magnetically driven jets and winds , 1991 .

[63]  C. Norman,et al.  The collimation of magnetized winds , 1989 .

[64]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .

[65]  M. Reid,et al.  Subluminal Motion and Limb Brightening in the Nuclear Jet of M87 , 1989 .

[66]  G. Belvedere Accretion Disks and Magnetic Fields in Astrophysics , 1989 .

[67]  A. Marscher,et al.  The Gasdynamics of Compact Relativistic Jets , 1988 .

[68]  G. Belvedere Accretion Disks and Magnetic Fields: a Europhysics Study Conference , 1988 .

[69]  J. C. Wang,et al.  Self-collimated electromagnetic jets from magnetized accretion disks , 1987 .

[70]  C. Norman,et al.  Centrifugally driven winds from contracting molecular disks , 1983 .

[71]  R. Sanders THE RECONFINEMENT OF JETS , 1983 .

[72]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[73]  A. Konigl Relativistic jets as X-ray and gamma-ray sources. , 1981 .

[74]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[75]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[76]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[77]  Martin J. Rees,et al.  A ‘Twin-Exhaust’ Model for Double Radio Sources , 1974 .

[78]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[79]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .