A model experiment on nano-particle stability in 12Cr-ODS steel using high-resolution high voltage microscopy

[1]  H. Q. Yu,et al.  Response of nanoclusters to heavy-ion irradiation in an Fe-12Cr ODS steel , 2021 .

[2]  M. Veshchunov On the Brownian coagulation of nanosized oxide particles in ODS materials under irradiation and annealing conditions , 2020 .

[3]  Sun-Ryung Oh,et al.  Radiation-induced nanoparticle growth in 12Cr-ODS steel at elevated temperature , 2020 .

[4]  A. Kimura,et al.  Annealing behavior of hardening and ductility loss of a 16Cr–4Al ODS ferritic steel irradiated with high energy Ne ions , 2020 .

[5]  R. Lebensohn,et al.  On the use of transmission electron microscopy to quantify dislocation densities in bulk metals , 2020 .

[6]  S. Zinkle,et al.  Materials for future nuclear energy systems , 2019 .

[7]  C. Hin,et al.  Modelling the influence of strain fields around precipitates on defect equilibria and kinetics under irradiation in ODS steels: A multi scale approach , 2019 .

[8]  Céline Cabet,et al.  Ferritic-martensitic steels for fission and fusion applications , 2019, Journal of Nuclear Materials.

[9]  S. Ohnuki,et al.  Effect of helium and hydrogen synergy on vacancy migration energy in Fe-10Cr model alloy , 2019, Journal of Alloys and Compounds.

[10]  Jijun Zhao,et al.  Energetics of helium-vacancy complexes in Fe-9Cr alloys from first-principles calculations , 2019, Journal of Nuclear Materials.

[11]  Yufeng Du,et al.  Electron-irradiation-induced Cr segregation in Fe-Cr model alloy pre-implanted with hydrogen ions , 2018 .

[12]  J. Wharry,et al.  Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys , 2017 .

[13]  F. Bergner,et al.  The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation , 2017 .

[14]  C. Hin,et al.  Radiation induced segregation in quaternary Fe-Ti-Y-O alloys , 2017 .

[15]  J. Lewandowski,et al.  Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations , 2017 .

[16]  K. Yano,et al.  A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions , 2017 .

[17]  A. Kimura,et al.  Effect of Cr/Al contents on the 475ºC age-hardening in oxide dispersion strengthened ferritic steels , 2016 .

[18]  L. Shao,et al.  Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces , 2016 .

[19]  Y. Carlan,et al.  Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials , 2015 .

[20]  Adrian Barbu,et al.  Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys , 2014 .

[21]  Y. Carlan,et al.  Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose , 2014 .

[22]  X. P. Wang,et al.  Development of 9Cr-ODS ferritic-martensitic steel prepared by chemical reduction and mechanical milling , 2014 .

[23]  J. Sietsma,et al.  Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy , 2013 .

[24]  V. Shutthanandan,et al.  Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels , 2013 .

[25]  Amit Misra,et al.  Effect of grain boundary character on sink efficiency , 2012 .

[26]  Y. Carlan,et al.  In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation , 2012 .

[27]  Baoyi Wang,et al.  Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique , 2012 .

[28]  Y. Carlan,et al.  Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials , 2012 .

[29]  C. Hin,et al.  Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: Modeling of precipitation kinetics and yield strength , 2010 .

[30]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[31]  A. Kimura,et al.  Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation , 2009 .

[32]  Philippe Dubuisson,et al.  CEA developments of new ferritic ODS alloys for nuclear applications , 2009 .

[33]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[34]  S. Thevuthasan,et al.  Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation , 2008 .

[35]  Frédéric Soisson,et al.  Cu-precipitation kinetics in α − Fe from atomistic simulations: Vacancy-trapping effects and Cu-cluster mobility , 2007 .

[36]  P. Vladimirov,et al.  Diffusion coefficients and thermal stability of small helium-vacancy clusters in iron , 2007 .

[37]  Roger E. Stoller,et al.  Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions , 2007 .

[38]  S. Thevuthasan,et al.  The Stability of 9Cr-ODS Oxide Particles Under Heavy-Ion Irradiation , 2005 .

[39]  F. Willaime,et al.  Ab initio study of helium in α-Fe : Dissolution, migration, and clustering with vacancies , 2005 .

[40]  R. Bullough,et al.  The rate theory of swelling due to void growth in irradiated metals , 1972 .

[41]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[42]  C. Wagner Theory of Precipitate Change by Redissolution , 1961 .