15N NMR spectroscopy 24—chemical shifts and coupling constants of α-amino acid N-carboxyanhydrides and related heterocycles†

The chemical shifts of amino acid N-carboxyanhydrides (NCAs) and cyclic or linear urethanes are less sensitive to solvent effects than those of amides and lactams. The values of the one-bond 15N1H coupling constants depend on the solvent and are 5-8 Hz larger than those of ureas and amides. The 15N13C coupling constant of the NCO group is also unusually high, while that of the N—CH group lies within the range known for N-acylated aliphatic amines. The one-bond 15N13C coupling constant was found to be insensitive to conformational changes.

[1]  K. Nicolaou,et al.  N-Phenylselenophthalimide. A useful reagent for the facile transformation of (1) carboxylic acids into either selenol esters or amides and (2) alcohols into alkyl phenyl selenides , 1981 .

[2]  W. Hull,et al.  15N NMR spectroscopy. 23—Shift effects of protecting groups in oligopeptides of glycine and alanine , 1980 .

[3]  W. Hull,et al.  15N NMR spectroscopy 12:—steric effects in diastereomeric oligopeptides of alanine, phenylalanine and valine , 1979 .

[4]  M. Llinás,et al.  Signs of heteronuclear spin–spin coupling constants in 15N‐acetamide , 1979 .

[5]  H. Rüterjans,et al.  NMR investigations on alanyl-[15% 13C, 95% 15N]-proline: 15N chemical shifts and 13C15N coupling constants , 1978 .

[6]  H. Kricheldorf 15N NMR spectroscopy, 9. Solvent effects on polypeptides and polyamides , 1978 .

[7]  W. Hull,et al.  15N‐NMR spectroscopy. IV. Comparison of poly(L‐lysine) and isopoly(L‐lysine) , 1978 .

[8]  H. R. Kricheldorf 15N‐NMR‐Untersuchung von Lösungsmitteleffekten bei Sulfonamiden , 1978 .

[9]  W. Hull,et al.  15N‐NMR spectroscopy. III. Neighboring residue effects in sequence polymers containing glycylglycine units , 1978 .

[10]  W. Hull,et al.  15N-NMR Spectroscopy. V. Investigation of Peptides and Sequence Polyamides Containing ω-Aminosulfonic Acids , 1978 .

[11]  W. Hull,et al.  15N nmr spectroscopy. I. Polysarcosine and related sequence polypeptides , 1977, Biopolymers.

[12]  H. R. Kricheldorf Mechanismus der NCA‐Polymerisation, 4. Synthese und Reaktionen von N‐Acyl‐NCA , 1977 .

[13]  T. Venanzi,et al.  THE RELATION BETWEEN 15N13C COUPLING CONSTANTS AND HYBRIDIZATION , 1977 .

[14]  T. Venanzi,et al.  Relationship between /sup 15/N/sup 13/C coupling constants and hybridization , 1976 .

[15]  F. Weinhold,et al.  Conceptual model of "through-bonds" interactions , 1976 .

[16]  S. Forsén,et al.  Spin–spin couplings in doubly 15N labelled urea and 1,3‐dimethylurea , 1976 .

[17]  T. Axenrod,et al.  15N n.m.r.: Substituent effects on nitrogen chemical shifts in anilinium ions , 1976 .

[18]  R. Lichter,et al.  Nitrogen-15 magnetic resonance spectroscopy XVI—natural-abundance spectra of aromatic amines†‡ , 1974 .

[19]  John Roberts,et al.  Carbon-13 and nitrogen-15 nuclear magnetic resonance spectroscopy of nitrile oxides and related reaction products. Unexpected carbon-13 and nitrogen-15 nuclear magnetic resonance parameters of 2,4,6-trimethylbenzonitrile oxide , 1973 .

[20]  Sogn Ja,et al.  Study of nitrogen-15-labeled amino acids and peptides by nuclear magnetic resonance spectroscopy. , 1973 .

[21]  B. Coxon,et al.  The N.M.R. spectroscopy of derivatives of 6-amino-6-deoxy-D-glucose-6- 15 N. 13 C Fourier-transform and internuclear, double- and triple-resonance studies. , 1971, Carbohydrate research.

[22]  John D. Roberts,et al.  NITROGEN-15 MAGNETIC RESONANCE SPECTROSCOPY. II. COUPLING CONSTANTS. , 1964 .

[23]  H. Kricheldorf 15N NMR spectroscopy. 19—spectroscopic characterization of cyclodipeptides (2,5‐dioxopiperazines) , 1980 .